Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Centered Hardy-Littlewood maximal functions on Heisenberg type groups


Authors: Hong-Quan Li and Bin Qian
Journal: Trans. Amer. Math. Soc. 366 (2014), 1497-1524
MSC (2010): Primary 42B25, 43A80
DOI: https://doi.org/10.1090/S0002-9947-2013-05965-X
Published electronically: September 26, 2013
MathSciNet review: 3145740
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, by establishing uniform lower bounds for the Poisson kernel and $ (-\Delta )^{-\frac 12}$ on the Heisenberg type group $ \mathbb{H}(2n,m)$ with $ m \geq 2$, which follow from the various properties of Bessel functions and Legendre functions, we prove that there exists a constant $ A>0$ such that, for all $ f\in L^1(\mathbb{H}(2n,m))$ and all $ n,m \in \mathbb{N}^*$ satisfying $ 4 \leq m^2\ll \log n$, we have $ \Vert M_{K}f\Vert _{L^{1,\infty }}\le An\Vert f\Vert _1$, where $ M_{K}$ denotes the centered Hardy-Littlewood maximal function defined by the Korányi norm. For the centered Hardy-Littlewood maximal function $ M_{CC}$ defined by the Carnot-Carathédory distance, we prove $ \Vert M_{CC}f\Vert _{L^{1,\infty }}\le A(m)n\Vert f\Vert _1$ holds for some constant $ A(m)$ independent of $ n$.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Aldaz, The weak type $ (1,1)$ bounds for the maximal function associated to cubes grow to infinity with the dimension, Ann. of Math. (2) 173 (2011), no. 2, 1013-1023. MR 2776368 (2012b:42028), https://doi.org/10.4007/annals.2011.173.2.10
  • [2] Richard Beals, Bernard Gaveau, and Peter C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl. (9) 79 (2000), no. 7, 633-689. MR 1776501 (2001g:35047), https://doi.org/10.1016/S0021-7824(00)00169-0
  • [3] A. Bonfiglioli and F. Uguzzoni, Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), no. 1, 161-215. MR 2027639 (2004k:35057), https://doi.org/10.1016/S0022-1236(03)00138-1
  • [4] Ewa Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), no. 2, 239-247. MR 924068 (89d:22006)
  • [5] G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376. MR 0315267 (47 #3816)
  • [6] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010 (2008g:00005)
  • [7] Yongyang Jin and Genkai Zhang, Fundamental solutions of Kohn sub-Laplacians on anisotropic Heisenberg groups and H-type groups, Canad. Math. Bull. 54 (2011), no. 1, 126-140. MR 2797973 (2012c:35445), https://doi.org/10.4153/CMB-2010-086-1
  • [8] Aroldo Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147-153. MR 554324 (81c:58059), https://doi.org/10.2307/1998286
  • [9] Peter M. Knopf, Maximal functions on the unit $ n$-sphere, Pacific J. Math. 129 (1987), no. 1, 77-84. MR 901258 (88i:42031)
  • [10] Hong-Quan Li, Fonctions maximales centrées de Hardy-Littlewood sur les groupes de Heisenberg, Studia Math. 191 (2009), no. 1, 89-100 (French, with English summary). MR 2471260 (2009k:42039), https://doi.org/10.4064/sm191-1-7
  • [11] Hong-Quan Li, Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg, J. Reine Angew. Math. 646 (2010), 195-233 (French, with English summary). MR 2719560 (2011g:58039), https://doi.org/10.1515/CRELLE.2010.070
  • [12] Hong-Quan Li, Fonctions maximales centrées de Hardy-Littlewood pour les opérateurs de Grushin. Preprint 2010.
  • [14] Hong-Quan Li, Remark on ``Maximal functions on the unit $ n$-sphere'' by Peter M. Knopf (1987), Pacific J. Math. 263 (2013), no. 1, 253-256, DOI 10.2140/pjm:2013.263.253.
  • [14] Peter M. Knopf, Maximal functions on the unit $ n$-sphere, Pacific J. Math. 129 (1987), no. 1, 77-84. MR 901258 (88i:42031)
  • [15] Hong-Quan Li and Noël Lohoué, Fonction maximale centrée de Hardy-Littlewood sur les espaces hyperboliques, Ark. Mat. 50 (2012), no. 2, 359-378 (French, with French summary). MR 2961327, https://doi.org/10.1007/s11512-011-0163-3
  • [16] Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968 (38 #1291)
  • [17] Assaf Naor and Terence Tao, Random martingales and localization of maximal inequalities, J. Funct. Anal. 259 (2010), no. 3, 731-779. MR 2644102 (2011k:42040), https://doi.org/10.1016/j.jfa.2009.12.009
  • [18] Jennifer Randall, The heat kernel for generalized Heisenberg groups, J. Geom. Anal. 6 (1996), no. 2, 287-316. MR 1469125 (99b:22018), https://doi.org/10.1007/BF02921603
  • [19] S. Rigot, Mass transportation in groups of type $ H$, Commun. Contemp. Math. 7 (2005), no. 4, 509-537. MR 2166663 (2006e:49089), https://doi.org/10.1142/S0219199705001854
  • [20] E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in $ {\bf R}^{n}$ for large $ n$, Ark. Mat. 21 (1983), no. 2, 259-269. MR 727348 (86a:42027), https://doi.org/10.1007/BF02384314
  • [21] N. M. Temme, Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function, Math. Comp. 29 (1975), no. 132, 1109-1114. MR 0387674 (52 #8513)
  • [22] Kang-Hai Tan and Xiao-Ping Yang, Characterisation of the sub-Riemannian isometry groups of $ H$-type groups, Bull. Austral. Math. Soc. 70 (2004), no. 1, 87-100. MR 2079363 (2005c:53033), https://doi.org/10.1017/S000497270003584X
  • [23] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884 (95f:43008)
  • [24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, 1944. MR 0010746 (6,64a)
  • [25] J. M. Zhao, N. Q. Song, Maximal function on the quaternion Heisenberg groups. Preprint 2010.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B25, 43A80

Retrieve articles in all journals with MSC (2010): 42B25, 43A80


Additional Information

Hong-Quan Li
Affiliation: School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
Email: hongquan{\textunderscore}li@fudan.edu.cn, hong{\textunderscore}quanli@yahoo.fr

Bin Qian
Affiliation: School of Mathematics and Statistics, Changshu Institute of Technology 215500, Changshu, People’s Republic of China
Email: binqiancn@yahoo.com.cn, binqiancn@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2013-05965-X
Received by editor(s): February 10, 2012
Published electronically: September 26, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society