Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Almost totally complex points on elliptic curves

Authors: Xavier Guitart, Victor Rotger and Yu Zhao
Journal: Trans. Amer. Math. Soc. 366 (2014), 2773-2802
MSC (2010): Primary 11G05, 11G40
Published electronically: September 19, 2013
MathSciNet review: 3165655
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F/F_0$ be a quadratic extension of totally real number fields, and let $ E$ be an elliptic curve over $ F$ which is isogenous to its Galois conjugate over $ F_0$. A quadratic extension $ M/F$ is said to be almost totally complex (ATC) if all archimedean places of $ F$ but one extend to a complex place of $ M$. The main goal of this note is to provide a new construction for a supply of Darmon-like points on $ E$, which are conjecturally defined over certain ring class fields of $ M$. These points are constructed by means of an extension of Darmon's ATR method to higher-dimensional modular abelian varieties, from which they inherit the following features: they are algebraic provided Darmon's conjectures on ATR points hold true, and they are explicitly computable, as we illustrate with a detailed example that provides numerical evidence for the validity of our conjectures.

References [Enhancements On Off] (What's this?)

  • [BD] M. Bertolini, H. Darmon, The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. Math. 170 (2009), 343-369. MR 2521118 (2010m:11072)
  • [BCDT] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over $ \mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no.4, 843-939. MR 1839918 (2002d:11058)
  • [BR] D. Blasius, J. D. Rogawski, Motives for Hilbert modular forms, Inventiones Math. 114 (1993), no.1, 55-87. MR 1235020 (94i:11033)
  • [Da1] H. Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics 101, 2003. MR 2020572 (2004k:11103)
  • [Da2] H. Darmon, Integration on $ \mathcal {H}_{\ell }\times \mathcal {H}$ and arithmetic applications, Ann. Math. 154 (2001), no. 3, 589-639. MR 1884617 (2003j:11067)
  • [Das1] S. Dasgupta, Stark-Heegner points on modular Jacobians, Ann. Sci. École Normale Supérieure, 4e sér. 38 (2005), no.3, 427-469. MR 2166341 (2006e:11080)
  • [Das2] S. Dasgupta, Gross-Stark Units, Stark-Heegner Points, and Class Fields of Real Quadratic Fields, Ph.D. Thesis, University of California-Berkeley (2004). MR 2706449
  • [De] L. Dembele, An algorithm for modular elliptic curves over real quadratic fields, Experiment. Math. 17 (2008), no.4, 427-438. MR 2484426 (2010a:11119)
  • [Di] L.V. Dieulefait, Langlands Base Change for $ \mathrm {GL}(2)$, Annals of Math., to appear.
  • [DL] H. Darmon, A. Logan, Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. 40 (2003), 2153-2180. MR 1997296 (2005f:11110)
  • [DRZ] H. Darmon, V. Rotger, Y. Zhao, The Birch and Swinnerton-Dyer conjecture for $ \mathbb{Q}$-curves and Oda's period relations, Proc. Int. Symp. in honor of T. Oda, Series on Number Theory and its Applications 7, Y. Hamahata, T. Ichikawa, A. Murase, T. Sugano, eds., World Scientific (2012), 1-40. MR 2908033
  • [DV] L. Dembélé, J. Voight, Explicit methods for Hilbert modular forms, in H. Darmon, F. Diamond, L.V. Dieulefait, B. Edixhoven, V. Rotger (eds.), Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Centre de Recerca Matemàtica (Bellaterra, Spain), to appear.
  • [Ga1] J. Gartner, Points de Darmon et varieties de Shimura, Ph.D. thesis, Jussieu (2011), available at
  • [Ga2] J. Gartner, Darmon's points and quaternionic Shimura varieties, Canad. J. Math. 64 (2012), 1248-1288. MR 2994664
  • [Gr] M. Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura varieties, Duke Math. J. 147 (2009), no.3, 541-575. MR 2510743 (2010f:11097)
  • [GSS] M. Greenberg, M. A. Seveso, S. Shahabi, $ p$-adic $ L$-functions, $ p$-adic Jacquet-Langlands, and arithmetic applications, preprint 2011.
  • [GZ] B.H. Gross and D.B. Zagier, Heegner points and derivatives of $ L$-series. Invent. Math. 84 (1986), no.2, 225-320. MR 833192 (87j:11057)
  • [GL] J. González, J-C. Lario, $ \mathbb{Q}$-curves and their Manin ideals, Amer. J. Math. 123 (2001), no.3, 475-503. MR 1833149 (2002e:11070)
  • [GM1] X. Guitart, M. Masdeu, Computation of ATR Darmon points on non-geometrically modular elliptic curves, Experimental Mathematics 22(1):85-98 (2013). MR 3038785
  • [GM2] X. Guitart, M. Masdeu, Elementary matrix decomposition and the computation of Darmon points with higher conductor, to appear in Mathematics of Computation.
  • [Ko] V.A. Kolyvagin, Finiteness of $ E(\mathbf Q)$ and $ \mathbb{L} (E,\mathbf Q)$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no.3, 670-671; translation in Math. USSR-Izv. 32 (1989), no.3, 523-541. MR 954295 (89m:11056)
  • [LRV] M. Longo, V. Rotger, S. Vigni, On rigid analytic uniformizations of Jacobians of Shimura curves, to appear in American J. Math.
  • [LV] M. Longo, S. Vigni, The rationality of quaternionic Darmon points over genus fields of real quadratic fields, preprint 2011.
  • [Mi1] J. S. Milne, Introduction to Shimura varieties, available at
  • [Mi2] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 178 (2009), no.3, 485-504. MR 0330174 (48:8512)
  • [MS] Y. Matsushima, G. Shimura, On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes, Ann. Math. (2) 78 (1963), 417-449. MR 0155340 (27:5274)
  • [Od] T. Oda, Periods of Hilbert modular surfaces. Progress in Mathematics 19, Birkhäuser, Boston, Mass. 1982. MR 670069 (83k:10057)
  • [Qu] J. Quer, Fields of definition of building blocks, Math. Comp. 78 (2009), 537-554. Appendix available at MR 2448720 (2010a:11109)
  • [Ri] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no.1, 43-62. MR 594532 (82e:10043)
  • [S$ ^{+}$09] W.A. Stein et al., Sage Mathematics Software (Version 4.7), The Sage Development Team, 2011,
  • [Sh] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), no.3, 637-679. MR 507462 (80a:10043)
  • [SW] C. Skinner, A. Wiles, Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), 185-215. MR 1928993 (2004b:11073)
  • [Vi] M. F. Vigneras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics 800, Springer, Berlin 1980. MR 580949 (82i:12016)
  • [Wi] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math. (2) 141 (1995), no.3, 443-551. MR 1333035 (96d:11071)
  • [Yo] H. Yoshida, On the zeta functions of Shimura varieties and periods of Hilbert modular forms. Duke Math. J. 75 (1994), no. 1, 121-191. MR 1284818 (95d:11059)
  • [Zh] S.-W. Zhang, Arithmetic of Shimura curves, Sc. China Math. 53 (2010), no.3, 573-592. MR 2608314 (2011b:11084)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G05, 11G40

Retrieve articles in all journals with MSC (2010): 11G05, 11G40

Additional Information

Xavier Guitart
Affiliation: Max-Planck-Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany – and – Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain
Address at time of publication: Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstr. 29, 45326, Essen, Germany

Victor Rotger
Affiliation: Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain

Yu Zhao
Affiliation: Department of Mathematics, John Abbott College, Montreal, Quebec, Canada H9X 3L9

Received by editor(s): April 16, 2012
Received by editor(s) in revised form: May 28, 2012, October 2, 2012, and October 4, 2012
Published electronically: September 19, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society