Almost totally complex points on elliptic curves

Authors:
Xavier Guitart, Victor Rotger and Yu Zhao

Journal:
Trans. Amer. Math. Soc. **366** (2014), 2773-2802

MSC (2010):
Primary 11G05, 11G40

DOI:
https://doi.org/10.1090/S0002-9947-2013-05981-8

Published electronically:
September 19, 2013

MathSciNet review:
3165655

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a quadratic extension of totally real number fields, and let be an elliptic curve over which is isogenous to its Galois conjugate over . A quadratic extension is said to be almost totally complex (ATC) if all archimedean places of but one extend to a complex place of . The main goal of this note is to provide a new construction for a supply of Darmon-like points on , which are conjecturally defined over certain ring class fields of . These points are constructed by means of an extension of Darmon's ATR method to higher-dimensional modular abelian varieties, from which they inherit the following features: they are algebraic provided Darmon's conjectures on ATR points hold true, and they are explicitly computable, as we illustrate with a detailed example that provides numerical evidence for the validity of our conjectures.

**[BD]**M. Bertolini, H. Darmon,*The rationality of Stark-Heegner points over genus fields of real quadratic fields*, Ann. Math.**170**(2009), 343-369. MR**2521118 (2010m:11072)****[BCDT]**C. Breuil, B. Conrad, F. Diamond, and R. Taylor,*On the modularity of elliptic curves over : wild 3-adic exercises*, J. Amer. Math. Soc.**14**(2001), no.4, 843-939. MR**1839918 (2002d:11058)****[BR]**D. Blasius, J. D. Rogawski,*Motives for Hilbert modular forms*, Inventiones Math.**114**(1993), no.1, 55-87. MR**1235020 (94i:11033)****[Da1]**H. Darmon,*Rational points on modular elliptic curves*, CBMS Regional Conference Series in Mathematics**101**, 2003. MR**2020572 (2004k:11103)****[Da2]**H. Darmon,*Integration on and arithmetic applications*, Ann. Math.**154**(2001), no. 3, 589-639. MR**1884617 (2003j:11067)****[Das1]**S. Dasgupta,*Stark-Heegner points on modular Jacobians*, Ann. Sci. École Normale Supérieure, 4e sér.**38**(2005), no.3, 427-469. MR**2166341 (2006e:11080)****[Das2]**S. Dasgupta,*Gross-Stark Units, Stark-Heegner Points, and Class Fields of Real Quadratic Fields*, Ph.D. Thesis, University of California-Berkeley (2004). MR**2706449****[De]**L. Dembele,*An algorithm for modular elliptic curves over real quadratic fields*, Experiment. Math.**17**(2008), no.4, 427-438. MR**2484426 (2010a:11119)****[Di]**L.V. Dieulefait,*Langlands Base Change for*, Annals of Math., to appear.**[DL]**H. Darmon, A. Logan,*Periods of Hilbert modular forms and rational points on elliptic curves*, Int. Math. Res. Not.**40**(2003), 2153-2180. MR**1997296 (2005f:11110)****[DRZ]**H. Darmon, V. Rotger, Y. Zhao,*The Birch and Swinnerton-Dyer conjecture for -curves and Oda's period relations*, Proc. Int. Symp. in honor of T. Oda, Series on Number Theory and its Applications**7**, Y. Hamahata, T. Ichikawa, A. Murase, T. Sugano, eds., World Scientific (2012), 1-40. MR**2908033****[DV]**L. Dembélé, J. Voight,*Explicit methods for Hilbert modular forms*, in H. Darmon, F. Diamond, L.V. Dieulefait, B. Edixhoven, V. Rotger (eds.), Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Centre de Recerca Matemàtica (Bellaterra, Spain), to appear.**[Ga1]**J. Gartner,*Points de Darmon et varieties de Shimura*, Ph.D. thesis, Jussieu (2011), available at`http://jerome.gaertner.free.fr/`**[Ga2]**J. Gartner,*Darmon's points and quaternionic Shimura varieties*, Canad. J. Math.**64**(2012), 1248-1288. MR**2994664****[Gr]**M. Greenberg,*Stark-Heegner points and the cohomology of quaternionic Shimura varieties*, Duke Math. J.**147**(2009), no.3, 541-575. MR**2510743 (2010f:11097)****[GSS]**M. Greenberg, M. A. Seveso, S. Shahabi,*-adic -functions, -adic Jacquet-Langlands, and arithmetic applications*, preprint 2011.**[GZ]**B.H. Gross and D.B. Zagier,*Heegner points and derivatives of -series*. Invent. Math.**84**(1986), no.2, 225-320. MR**833192 (87j:11057)****[GL]**J. González, J-C. Lario,*-curves and their Manin ideals*, Amer. J. Math.**123**(2001), no.3, 475-503. MR**1833149 (2002e:11070)****[GM1]**X. Guitart, M. Masdeu,*Computation of ATR Darmon points on non-geometrically modular elliptic curves*, Experimental Mathematics 22(1):85-98 (2013). MR**3038785****[GM2]**X. Guitart, M. Masdeu,*Elementary matrix decomposition and the computation of Darmon points with higher conductor*, to appear in*Mathematics of Computation*.**[Ko]**V.A. Kolyvagin,*Finiteness of and for a subclass of Weil curves*, Izv. Akad. Nauk SSSR Ser. Mat.**52**(1988), no.3, 670-671; translation in Math. USSR-Izv.**32**(1989), no.3, 523-541. MR**954295 (89m:11056)****[LRV]**M. Longo, V. Rotger, S. Vigni,*On rigid analytic uniformizations of Jacobians of Shimura curves*, to appear in*American J. Math.***[LV]**M. Longo, S. Vigni,*The rationality of quaternionic Darmon points over genus fields of real quadratic fields*, preprint 2011.**[Mi1]**J. S. Milne,*Introduction to Shimura varieties*, available at http://www.jmilne.org/math.**[Mi2]**J. S. Milne,*On the arithmetic of abelian varieties*, Invent. Math.**178**(2009), no.3, 485-504. MR**0330174 (48:8512)****[MS]**Y. Matsushima, G. Shimura,*On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes*, Ann. Math. (2)**78**(1963), 417-449. MR**0155340 (27:5274)****[Od]**T. Oda,*Periods of Hilbert modular surfaces*. Progress in Mathematics**19**, Birkhäuser, Boston, Mass. 1982. MR**670069 (83k:10057)****[Qu]**J. Quer,*Fields of definition of building blocks*, Math. Comp.**78**(2009), 537-554. Appendix available at http://arxiv.org/abs/1202.3061 MR**2448720 (2010a:11109)****[Ri]**K. A. Ribet,*Twists of modular forms and endomorphisms of abelian varieties*, Math. Ann.**253**(1980), no.1, 43-62. MR**594532 (82e:10043)****[S09]**W.A. Stein et al.,*Sage Mathematics Software (Version 4.7)*, The Sage Development Team, 2011,`http://www.sagemath.org`.**[Sh]**G. Shimura,*The special values of the zeta functions associated with Hilbert modular forms*, Duke Math. J.,**45**(1978), no.3, 637-679. MR**507462 (80a:10043)****[SW]**C. Skinner, A. Wiles,*Nearly ordinary deformations of irreducible residual representations*, Ann. Fac. Sci. Toulouse Math. (6)**10**(2001), 185-215. MR**1928993 (2004b:11073)****[Vi]**M. F. Vigneras,*Arithmétique des algèbres de quaternions.*Lecture Notes in Mathematics**800**, Springer, Berlin 1980. MR**580949 (82i:12016)****[Wi]**A. Wiles,*Modular elliptic curves and Fermat's last theorem*, Ann. Math. (2)**141**(1995), no.3, 443-551. MR**1333035 (96d:11071)****[Yo]**H. Yoshida,*On the zeta functions of Shimura varieties and periods of Hilbert modular forms.*Duke Math. J. 75 (1994), no. 1, 121-191. MR**1284818 (95d:11059)****[Zh]**S.-W. Zhang,*Arithmetic of Shimura curves*, Sc. China Math.**53**(2010), no.3, 573-592. MR**2608314 (2011b:11084)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
11G05,
11G40

Retrieve articles in all journals with MSC (2010): 11G05, 11G40

Additional Information

**Xavier Guitart**

Affiliation:
Max-Planck-Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany – and – Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain

Address at time of publication:
Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstr. 29, 45326, Essen, Germany

Email:
xevi.guitart@gmail.com

**Victor Rotger**

Affiliation:
Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain

Email:
victor.rotger@upc.edu

**Yu Zhao**

Affiliation:
Department of Mathematics, John Abbott College, Montreal, Quebec, Canada H9X 3L9

Email:
yu.zhao@johnabbott.qc.ca

DOI:
https://doi.org/10.1090/S0002-9947-2013-05981-8

Received by editor(s):
April 16, 2012

Received by editor(s) in revised form:
May 28, 2012, October 2, 2012, and October 4, 2012

Published electronically:
September 19, 2013

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.