Almost totally complex points on elliptic curves

Authors:
Xavier Guitart, Victor Rotger and Yu Zhao

Journal:
Trans. Amer. Math. Soc. **366** (2014), 2773-2802

MSC (2010):
Primary 11G05, 11G40

Published electronically:
September 19, 2013

MathSciNet review:
3165655

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a quadratic extension of totally real number fields, and let be an elliptic curve over which is isogenous to its Galois conjugate over . A quadratic extension is said to be almost totally complex (ATC) if all archimedean places of but one extend to a complex place of . The main goal of this note is to provide a new construction for a supply of Darmon-like points on , which are conjecturally defined over certain ring class fields of . These points are constructed by means of an extension of Darmon's ATR method to higher-dimensional modular abelian varieties, from which they inherit the following features: they are algebraic provided Darmon's conjectures on ATR points hold true, and they are explicitly computable, as we illustrate with a detailed example that provides numerical evidence for the validity of our conjectures.

**[BD]**Massimo Bertolini and Henri Darmon,*The rationality of Stark-Heegner points over genus fields of real quadratic fields*, Ann. of Math. (2)**170**(2009), no. 1, 343–370. MR**2521118**, 10.4007/annals.2009.170.343**[BCDT]**Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor,*On the modularity of elliptic curves over 𝐐: wild 3-adic exercises*, J. Amer. Math. Soc.**14**(2001), no. 4, 843–939 (electronic). MR**1839918**, 10.1090/S0894-0347-01-00370-8**[BR]**Don Blasius and Jonathan D. Rogawski,*Motives for Hilbert modular forms*, Invent. Math.**114**(1993), no. 1, 55–87. MR**1235020**, 10.1007/BF01232663**[Da1]**Henri Darmon,*Rational points on modular elliptic curves*, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR**2020572****[Da2]**Henri Darmon,*Integration on ℋ_{𝓅}×ℋ and arithmetic applications*, Ann. of Math. (2)**154**(2001), no. 3, 589–639. MR**1884617**, 10.2307/3062142**[Das1]**Samit Dasgupta,*Stark-Heegner points on modular Jacobians*, Ann. Sci. École Norm. Sup. (4)**38**(2005), no. 3, 427–469 (English, with English and French summaries). MR**2166341**, 10.1016/j.ansens.2005.03.002**[Das2]**Samit Dasgupta,*Gross-Stark units, Stark-Heegner points, and class fields of real quadratic fields*, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–University of California, Berkeley. MR**2706449****[De]**Lassina Dembélé,*An algorithm for modular elliptic curves over real quadratic fields*, Experiment. Math.**17**(2008), no. 4, 427–438. MR**2484426****[Di]**L.V. Dieulefait,*Langlands Base Change for*, Annals of Math., to appear.**[DL]**Henri Darmon and Adam Logan,*Periods of Hilbert modular forms and rational points on elliptic curves*, Int. Math. Res. Not.**40**(2003), 2153–2180. MR**1997296**, 10.1155/S1073792803131108**[DRZ]**Henri Darmon, Victor Rotger, and Yu Zhao,*The Birch and Swinnerton-Dyer conjecture for ℚ-curves and Oda’s period relations*, Geometry and analysis of automorphic forms of several variables, Ser. Number Theory Appl., vol. 7, World Sci. Publ., Hackensack, NJ, 2012, pp. 1–40. MR**2908033**, 10.1142/9789814355605_0001**[DV]**L. Dembélé, J. Voight,*Explicit methods for Hilbert modular forms*, in H. Darmon, F. Diamond, L.V. Dieulefait, B. Edixhoven, V. Rotger (eds.), Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Centre de Recerca Matemàtica (Bellaterra, Spain), to appear.**[Ga1]**J. Gartner,*Points de Darmon et varieties de Shimura*, Ph.D. thesis, Jussieu (2011), available at`http://jerome.gaertner.free.fr/`**[Ga2]**Jérôme Gärtner,*Darmon’s points and quaternionic Shimura varieties*, Canad. J. Math.**64**(2012), no. 6, 1248–1288. MR**2994664**, 10.4153/CJM-2011-086-5**[Gr]**Matthew Greenberg,*Stark-Heegner points and the cohomology of quaternionic Shimura varieties*, Duke Math. J.**147**(2009), no. 3, 541–575. MR**2510743**, 10.1215/00127094-2009-017**[GSS]**M. Greenberg, M. A. Seveso, S. Shahabi,*-adic -functions, -adic Jacquet-Langlands, and arithmetic applications*, preprint 2011.**[GZ]**Benedict H. Gross and Don B. Zagier,*Heegner points and derivatives of 𝐿-series*, Invent. Math.**84**(1986), no. 2, 225–320. MR**833192**, 10.1007/BF01388809**[GL]**Josep González and Joan-C. Lario,*𝐐-curves and their Manin ideals*, Amer. J. Math.**123**(2001), no. 3, 475–503. MR**1833149****[GM1]**Xavier Guitart and Marc Masdeu,*Computation of ATR Darmon points on nongeometrically modular elliptic curves*, Exp. Math.**22**(2013), no. 1, 85–98. MR**3038785**, 10.1080/10586458.2013.738564**[GM2]**X. Guitart, M. Masdeu,*Elementary matrix decomposition and the computation of Darmon points with higher conductor*, to appear in*Mathematics of Computation*.**[Ko]**V. A. Kolyvagin,*Finiteness of 𝐸(𝑄) and SH(𝐸,𝑄) for a subclass of Weil curves*, Izv. Akad. Nauk SSSR Ser. Mat.**52**(1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv.**32**(1989), no. 3, 523–541. MR**954295****[LRV]**M. Longo, V. Rotger, S. Vigni,*On rigid analytic uniformizations of Jacobians of Shimura curves*, to appear in*American J. Math.***[LV]**M. Longo, S. Vigni,*The rationality of quaternionic Darmon points over genus fields of real quadratic fields*, preprint 2011.**[Mi1]**J. S. Milne,*Introduction to Shimura varieties*, available at http://www.jmilne.org/math.**[Mi2]**J. S. Milne,*On the arithmetic of abelian varieties*, Invent. Math.**17**(1972), 177–190. MR**0330174****[MS]**Yozô Matsushima and Goro Shimura,*On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes*, Ann. of Math. (2)**78**(1963), 417–449. MR**0155340****[Od]**Takayuki Oda,*Periods of Hilbert modular surfaces*, Progress in Mathematics, vol. 19, Birkhäuser, Boston, Mass., 1982. MR**670069****[Qu]**Jordi Quer,*Fields of definition of building blocks*, Math. Comp.**78**(2009), no. 265, 537–554. MR**2448720**, 10.1090/S0025-5718-08-02132-7**[Ri]**Kenneth A. Ribet,*Twists of modular forms and endomorphisms of abelian varieties*, Math. Ann.**253**(1980), no. 1, 43–62. MR**594532**, 10.1007/BF01457819**[S09]**W.A. Stein et al.,*Sage Mathematics Software (Version 4.7)*, The Sage Development Team, 2011,`http://www.sagemath.org`.**[Sh]**Goro Shimura,*The special values of the zeta functions associated with Hilbert modular forms*, Duke Math. J.**45**(1978), no. 3, 637–679. MR**507462****[SW]**C. M. Skinner and Andrew J. Wiles,*Nearly ordinary deformations of irreducible residual representations*, Ann. Fac. Sci. Toulouse Math. (6)**10**(2001), no. 1, 185–215 (English, with English and French summaries). MR**1928993****[Vi]**Marie-France Vignéras,*Arithmétique des algèbres de quaternions*, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR**580949****[Wi]**Andrew Wiles,*Modular elliptic curves and Fermat’s last theorem*, Ann. of Math. (2)**141**(1995), no. 3, 443–551. MR**1333035**, 10.2307/2118559**[Yo]**Hiroyuki Yoshida,*On the zeta functions of Shimura varieties and periods of Hilbert modular forms*, Duke Math. J.**75**(1994), no. 1, 121–191. MR**1284818**, 10.1215/S0012-7094-94-07505-4**[Zh]**Shou-Wu Zhang,*Arithmetic of Shimura curves*, Sci. China Math.**53**(2010), no. 3, 573–592. MR**2608314**, 10.1007/s11425-010-0046-2

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
11G05,
11G40

Retrieve articles in all journals with MSC (2010): 11G05, 11G40

Additional Information

**Xavier Guitart**

Affiliation:
Max-Planck-Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany – and – Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain

Address at time of publication:
Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstr. 29, 45326, Essen, Germany

Email:
xevi.guitart@gmail.com

**Victor Rotger**

Affiliation:
Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain

Email:
victor.rotger@upc.edu

**Yu Zhao**

Affiliation:
Department of Mathematics, John Abbott College, Montreal, Quebec, Canada H9X 3L9

Email:
yu.zhao@johnabbott.qc.ca

DOI:
https://doi.org/10.1090/S0002-9947-2013-05981-8

Received by editor(s):
April 16, 2012

Received by editor(s) in revised form:
May 28, 2012, October 2, 2012, and October 4, 2012

Published electronically:
September 19, 2013

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.