Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Baire-class $ \xi$ colorings: The first three levels

Authors: Dominique Lecomte and Miroslav Zeleny
Journal: Trans. Amer. Math. Soc. 366 (2014), 2345-2373
MSC (2010): Primary 03E15; Secondary 54H05
Published electronically: January 28, 2014
MathSciNet review: 3165641
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ \mathbb{G}_0$-dichotomy due to Kechris, Solecki and Todorčević characterizes the analytic relations having a Borel-measurable countable coloring. We give a version of the $ \mathbb{G}_0$-dichotomy for $ {\bf\Sigma }^{0}_{\xi }$-measurable countable colorings when $ \xi \leq 3$. A $ {\bf\Sigma }^{0}_{\xi }$-measurable countable coloring gives a covering of the diagonal consisting of countably many $ {\bf\Sigma }^{0}_{\xi }$ squares. This leads to the study of countable unions of $ {\bf\Sigma }^{0}_{\xi }$ rectangles. We also give a Hurewicz-like dichotomy for such countable unions when $ \xi \leq 2$.

References [Enhancements On Off] (What's this?)

  • [1] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • [2] A. S. Kechris, S. Solecki, and S. Todorcevic, Borel chromatic numbers, Adv. Math. 141 (1999), no. 1, 1-44. MR 1667145 (2000e:03132),
  • [3] Dominique Lecomte, On minimal non-potentially closed subsets of the plane, Topology Appl. 154 (2007), no. 1, 241-262. MR 2271786 (2007h:03095),
  • [4] Dominique Lecomte, A dichotomy characterizing analytic digraphs of uncountable Borel chromatic number in any dimension, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4181-4193. MR 2500884 (2010d:03078),
  • [5] Dominique Lecomte, How can we recognize potentially $ \Pi ^0_\xi $ subsets of the plane?, J. Math. Log. 9 (2009), no. 1, 39-62. MR 2665781 (2011j:03111),
  • [6] Alain Louveau, A separation theorem for $ \Sigma ^{1}_{1}$ sets, Trans. Amer. Math. Soc. 260 (1980), no. 2, 363-378. MR 574785 (81j:04001),
  • [7] Alain Louveau, Ensembles analytiques et boréliens dans les espaces produits, Astérisque, vol. 78, Société Mathématique de France, Paris, 1980 (French). With an English summary. MR 606933 (82j:03062)
  • [8] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam, 1980. MR 561709 (82e:03002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E15, 54H05

Retrieve articles in all journals with MSC (2010): 03E15, 54H05

Additional Information

Dominique Lecomte
Affiliation: Université de Picardie, I.U.T. de l’Oise, site de Creil, 13, allée de la faïencerie, 60 107 Creil, France
Address at time of publication: Institut de Mathématiques de Jussieu, Université Paris 6, Projet Analyse Fonctionnelle, Couloir 16-26, 4ème étage, Case 247, 4, place Jussieu, 75 252 Paris Cedex 05, France

Miroslav Zeleny
Affiliation: Faculty of Mathematics and Physics, Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic

Keywords: Borel chromatic number, Borel class, coloring, dichotomy, Hurewicz, partition, product
Received by editor(s): April 16, 2011
Received by editor(s) in revised form: May 11, 2012
Published electronically: January 28, 2014
Additional Notes: The work was part of the research project MSM 0021620839 financed by MSMT and partly supported by the grant GAČR 201/09/0067.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society