Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Recursive spectra of strongly minimal theories satisfying the Zilber Trichotomy


Authors: Uri Andrews and Alice Medvedev
Journal: Trans. Amer. Math. Soc. 366 (2014), 2393-2417
MSC (2010): Primary 03C57, 03C10
DOI: https://doi.org/10.1090/S0002-9947-2014-05897-2
Published electronically: January 28, 2014
MathSciNet review: 3165643
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We conjecture that for a strongly minimal theory $ T$ in a finite signature satisfying the Zilber Trichotomy, there are only three possibilities for the recursive spectrum of $ T$: all countable models of $ T$ are recursively presentable; none of them are recursively presentable; or only the zero-dimensional model of $ T$ is recursively presentable. We prove this conjecture for disintegrated (formerly, trivial) theories and for modular groups. The conjecture also holds via known results for fields. The conjecture remains open for finite covers of groups and fields.


References [Enhancements On Off] (What's this?)

  • [1] Uri Andrews, A new spectrum of recursive models using an amalgamation construction, J. Symbolic Logic 76 (2011), no. 3, 883-896. MR 2849250 (2012k:03094), https://doi.org/10.2178/jsl/1309952525
  • [2] Uri Andrews, New spectra of strongly minimal theories in finite languages, Ann. Pure Appl. Logic 162 (2011), no. 5, 367-372. MR 2765579 (2012d:03078), https://doi.org/10.1016/j.apal.2010.11.002
  • [3] J. T. Baldwin and A. H. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 79-96. MR 0286642 (44 #3851)
  • [4] Thomas Blossier and Elisabeth Bouscaren, Finitely axiomatizable strongly minimal groups, J. Symbolic Logic 75 (2010), no. 1, 25-50. MR 2605881 (2011j:03073), https://doi.org/10.2178/jsl/1264433908
  • [5] Steven Buechler, Essential stability theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1996. MR 1416106 (98j:03050)
  • [6] S. S. Gončarov, Constructive models of $ \aleph _{1}$-categorical theories, Mat. Zametki 23 (1978), no. 6, 885-888 (Russian). MR 502056 (80g:03029)
  • [7] Sergey S. Goncharov, Valentina S. Harizanov, Michael C. Laskowski, Steffen Lempp, and Charles F. D. McCoy, Trivial, strongly minimal theories are model complete after naming constants, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3901-3912 (electronic). MR 1999939 (2004g:03054), https://doi.org/10.1090/S0002-9939-03-06951-X
  • [8] Leo Harrington, Recursively presentable prime models, J. Symbolic Logic 39 (1974), 305-309. MR 0351804 (50 #4292)
  • [9] Bernhard Herwig, Steffen Lempp, and Martin Ziegler, Constructive models of uncountably categorical theories, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3711-3719. MR 1610909 (2000b:03129), https://doi.org/10.1090/S0002-9939-99-04920-5
  • [10] Ehud Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993), no. 2, 147-166. Stability in model theory, III (Trento, 1991). MR 1226304 (94d:03064), https://doi.org/10.1016/0168-0072(93)90171-9
  • [11] U. Hrushovski and A. Pillay, Weakly normal groups, Logic colloquium '85 (Orsay, 1985) Stud. Logic Found. Math., vol. 122, North-Holland, Amsterdam, 1987, pp. 233-244. MR 895647 (88e:03051), https://doi.org/10.1016/S0049-237X(09)70556-7
  • [12] Ehud Hrushovski and Boris Zilber, Zariski geometries, J. Amer. Math. Soc. 9 (1996), no. 1, 1-56. MR 1311822 (96c:03077), https://doi.org/10.1090/S0894-0347-96-00180-4
  • [13] N. G. Hisamiev, Strongly constructive models of a decidable theory, Izv. Akad. Nauk Kazah. SSR Ser. Fiz.-Mat. 1 (1974), 83-84, 94 (Russian). MR 0354344 (50 #6824)
  • [14] Daniel Lascar, Omega-stable groups, Model theory and algebraic geometry, Lecture Notes in Math., vol. 1696, Springer, Berlin, 1998, pp. 45-59. MR 1678598 (2000e:03101), https://doi.org/10.1007/978-3-540-68521-0_3
  • [15] Angus Macintyre, The word problem for division rings, J. Symbolic Logic 38 (1973), 428-436. MR 0337554 (49 #2323)
  • [16] David Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002. An introduction. MR 1924282 (2003e:03060)
  • [17] Anand Pillay, Geometric stability theory, Oxford Logic Guides, vol. 32, The Clarendon Press Oxford University Press, New York, 1996. Oxford Science Publications. MR 1429864 (98a:03049)
  • [18] Bruno Poizat, MM. Borel, Tits, Zilber et le Général Nonsense, J. Symbolic Logic 53 (1988), no. 1, 124-131 (French). MR 929379 (89c:03060), https://doi.org/10.2307/2274432

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03C57, 03C10

Retrieve articles in all journals with MSC (2010): 03C57, 03C10


Additional Information

Uri Andrews
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Alice Medvedev
Affiliation: Department of Mathematics, The City College of New York, New York, New York 10031

DOI: https://doi.org/10.1090/S0002-9947-2014-05897-2
Received by editor(s): January 11, 2012
Received by editor(s) in revised form: June 6, 2012
Published electronically: January 28, 2014
Additional Notes: The second author was partially supported by NSF FRG DMS-0854998 grant.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society