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TWISTED YANGIANS, TWISTED QUANTUM LOOP
ALGEBRAS AND AFFINE HECKE ALGEBRAS OF TYPE BC

HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

ABSTRACT. We study twisted Yangians of type AIIl which have appeared in
the literature under the name of reflection algebras. They admit g-versions
which are new twisted quantum loop algebras. We explain how these can be
defined equivalently either via the reflection equation or as coideal subalgebras
of Yangians of gl,, (resp. of quantum loop algebras of gl,,). The connection
with affine Hecke algebras of type BC' comes from a functor of Schur-Weyl
type between their module categories.

1. INTRODUCTION

Yangians are quantum groups of affine type with a plethora of applications in
theoretical physics. They are Hopf algebras which are quantizations of the envelop-
ing algebra of g ®c C[t], where g is a finite dimensional, complex, semi-simple Lie
algebra (or gl,,). Twisted Yangians appeared almost twenty years ago in the work
of G. Olshanski [Ol] and have been extensively studied since then for the classical
symmetric pairs (gl,(C),0,(C)), (gl2,(C),sp,,(C)); that is, gl,,(C) = ¢ @ p with
£t =0,(C), p=sym,(C) in the first case (where sym,,(C) is the space of n x n sym-
metric matrices), and ¢ = sp,,(C), p = gl,,(C) @ s0,,(C) @ s0,,(C) (as vector spaces
only) in the second case. These are two of the three families of classical symmetric
pairs of type A. In this paper, we focus on type AIII, which is the symmetric pair
(b, glp @ gl—p) with 0 < p < n — 1. (The numbering of these types originates
from the classification of Riemannian symmetric spaces due to E. Cartan.) More
precisely, gl,(C) =t @ p with ¢ = gl, @ gl,,_, and p = M, 5, (C) & M,,_, ,(C).

The twisted Yangians of type AIII were studied in [MoRa] under the name of
reflection algebras (where they were denoted B(n,l), | playing the role of p here),
following the work of E. Sklyanin [Sk], and even more general twisted Yangians are
the subject of the articles [Mall[Ma2] of N. MacKay. However, it was not yet known
if these two kinds of twisted Yangians for the symmetric pair (gl,, gl, ® gl,—,) were
(almost) isomorphic. This is one of the results of this paper (see Theorem for
the precise statement). In Section B35 we give a presentation in terms of generators
and relations of MacKay’s twisted Yangians when n = 2p. It should be noted that
we consider twisted Yangians which depend on two deformation parameters: they
appear, a priori, to be new algebras, but this is not really the case since one is a
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rescaling parameter and the dependency on the other parameter can be eliminated
via a simple isomorphism (see Corollary BI2). However, the two parameters in
question are important for the construction of the Drinfeld functor in Section Hl
The twisted Yangians are also coideal subalgebras inside the Yangian of gl,,, but are
not Hopf algebras; see Proposition B9 An interesting recent paper about coideal
subalgebras from the point of view of Manin triples is [BeCi].

The impetus for this paper came from a desire to generalize to the twisted
Yangians of type AIII the work of S. Khoroshkin and M. Nazarov [KhNall[KhNa2,
KhNa3|[KhNa4]. A starting point is the joint paper [EFM] of the third author in
which a functor is constructed from a category of Harish-Chandra modules for the
symmetric pair (gl,, gl, ®gl,—p) to the category of modules over a degenerate affine
Hecke algebra of type BC, extending the construction in [ArSul, which is originally
due to I. Cherednik [Ch2|] and was used by S. Khoroshkin and M. Nazarov in their
aforementioned work. A second ingredient used by these authors (in the case of
gl,,) is a functor, due originally to V. Drinfeld [Dr], which generalizes the classical
Schur-Weyl functor to Yangians and degenerate affine Hecke algebras of type A.
Another of our results is the construction of an analog of the Drinfeld functor from
modules over the degenerate affine Hecke algebra of type BC' to the category of
left modules over a twisted Yangian of type AIII; see Theorem 3 (It should be
noted, as pointed out in [KhNad|[KhNa4|, that no such functor exists for the other
two classical symmetric pairs of type A above.) It is simpler to obtain this functor
using MacKay’s presentation of twisted Yangians, but we are also able to define it
in terms of the generators used by A. Molev and E. Ragoucy in [MoRa]: this is
done in Theorem

In trying to extend the work of S. Khoroshkin and M. Nazarov, one of the first
obstacles is that the composite of the two functors discussed in the previous para-
graph does not seem to correspond to a homomorphism from the twisted Yangian
of type AIII to an algebra of the form g ®c PD(C' @ CF), where g should be a
Lie algebra part of a certain Howe dual pair and PD(C! ® CF¥) is the algebra of
polynomial differential operators on C! @ C¥. It is not clear what is the proper
substitute for Ug ®c PD(C! @ CF), so we do not have an analogue of proposition
1.3 in [KhNal] in type AIIL. This appears to be essentially due to the fact that
no simple formula like (1.14) in [KhNal] is known for the Drinfeld functor studied
below. The extension of the work of S. Khoroshkin and M. Nazarov to the sym-
metric pair (gly, gl, ® gl,—p) will hopefully be the subject of future work. At least
we can provide one application of the Drinfeld functor, namely, the construction in
Section [ of a Fock space representation of the twisted Yangian of type AIII, thus
extending work of D. Uglov for the Yangian of gl,, [Ug].

In the second part of the current article, we introduce new twisted quantum loop
algebras of type AIIl which can be viewed as g-versions of the twisted Yangians
of type AIIL This answers at least partially a question raised in [MRS]. Recently,
a general framework for understanding twisted quantum loop algebras has been
developed by S. Kolb via quantum symmetric pairs for Kac-Moody algebras [Kol.
We prove that our new twisted quantum loop algebras can be defined equivalently
as either coideal subalgebras of the quantum loop algebra of gl,, or using a reflec-
tion equation with parameters (Theorem [E15). We also show that their quasi-
classical limit is the enveloping algebra of a certain twisted loop algebra (Corollary
[616]). The second main result related to these new twisted quantum loop algebras
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UP(Lgly) is the construction of a Drinfeld functor between categories of modules
over affine Hecke algebras of type BC' and over 0 (Lgl,) (Theorem [Z4). The two
parameters on which this affine Hecke algebra depends match exactly with the two
parameters ¢ and § which enter the formula for the embedding of Uf(Lgl,,) in LUgl,.
In the last section, we determine a family of central elements in U5(Lgl,) via an
approach similar to the one used in [MRS] for twisted g-Yangians.

It is suggested in [NSS| to refer to a generalized Onsager algebra as any twisted
loop algebra obtained as the fixed-point set of an automorphism p of sl, (C[t,t~1])
of the form p(X ® p(t)) = po(X) @ p(t~1), where p(t) € C[t,t7!] and po is an
automorphism of sl,. (sl,, could be replaced by gl,,.) Our twisted quantum loop
algebras can thus be viewed as generalized ¢-Onsager algebras. Other such algebras
are studied in [BaBe,[BeFo], where a very broad class of reflection algebras associ-
ated to quantum affine algebras is considered. The paper [NSS| provides general
results about irreducible finite dimensional representations of equivariant map alge-
bras, and the classification of such representations for generalized Onsager algebras
is contained there: we include this result in Theorem

2. AFFINE HECKE ALGEBRAS OF TYPE B(C

We need to recall a couple of definitions and results about the affine Hecke
algebras of type BC and their degenerate version. The symmetric group on [
elements will be denoted &; and we set I' = Z/2Z, so that the wreath product
W, =T16; is the Weyl group of type BC;. The non-reduced root system of type
BC; consists of the following set of vectors:

{Feitej, te;—ej|l <i#j <IyU{Fe;, £2¢;|]1 <i <1} C R' = Spang{es, ..., e},

where {e;}!_; is the standard basis of R'. Let o;; be the reflection corresponding
to the root e; — e;, set o; = 05,41 and let 7; be the reflection corresponding to e;.
Definition 2.1. Let k1,52 € C. The degenerate affine Hecke algebra H, ,  of
type BCj is the algebra generated by the group algebra C[W;] and a set of pairwise
commuting elements ¥, ...,y; such that

0;Y; — Yi+10; = K1 for 1 SZSZ—L 0:Yj; = Y04 1fj§£l,l+1,

Ny + i = k2, iy =y if g # L

Lemma 2.2. The subalgebra of H. generated by y;,1 < i <[, and &; is iso-

R1,k2

morphic to the degenerate affine Hecke algebra Hf‘i1 of type GLj.

Note that, for any 1 < [, < [, we have an embedding ¢s : Hi < g

Ri,k2 Ri,Kk2
by considering the generators yi—i,41,. .-, Y, Yi—ig+1,---s Y and O1—jy41,--.,01-1

of H! For any 1 < [; < [, we also have an embedding ¢; : Hf_gl — H! by

K1,k2" R1,Rk2

considering the generators yi,...,y,,01,...,01,—1 of Hfm@. Moreover, if [1 +15 < I,

we can combine ¢; and ¢ to obtain an embedding ¢; ® ¢2 : Hfgl ®c Hf.fl’,{2 — Hfﬁhm.

However, 11 ®t2 does not extend to an embedding Hfgly,{2 ®@Hf§17,{2 — Hf€17K2 because,
if i <7, [vi,y;] = k103 (vi —5)-

We will need an equivalent definition of the degenerate affine Hecke algebra
H!

K1,K2"
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Lemma 2.3 ([EEM|, Lemma 3.1). H. , is isomorphic to the algebra generated by
elements g;, 1 <1i <1, and by C[W;] with the following relations:

OiYi = Yir10i, 0iY; = Yo if § F i+ 1, g = =y, G =y if i £

o 1

~ o~ R1K2 K
Wi, U] ZITUU(V - %) 41 ; ((0jk0ik — Tikoji)
ki,
(2.1) + 0k (—¥ive + Y6 + Vive) — oikoi (Vi — VW + Yivk))-

Proof. The connection between the two presentations is given by

l
Yi =yi — %%‘ - Z Tik +2 Zazk o ZUz‘k%‘%-

k=i+1 k=1
o k#i
O

Lemma 2.4 ([Lul, 3.12). The center of the degenerate affine Hecke algebra H.,
(resp. of H,‘C1 x,) 5 generated by the &;-symmetric polynomials in the variables
Y1,- ..,y (resp. in the variables y3,...,y?).

Let us now move on to the non-degenerate case. Strictly speaking, the next
definition is the one for the affine Hecke algebra of type gl;, which is also called the
extended affine Hecke algebra of type A;_1. To simplify the terminology and the
notation, we will say that it is the one of type A;_1.

Definition 2.5. Let k € C*. The affine Hecke algebra of type A;_1, denoted
H!, is the unital associative algebra with generators Ufl,. O'l 1, YljEl ,Ylil
satlsfying the relations:
(1) oo, ' =0l =1for 1 <i<l-1, VY;' =YY, =1, YY; =
Y;V; foralll<4,5<1;
(2) 0;0;4+10; = 0;4+1040+1 if 1 S ) é l— 2, 005 = 0404 if |Z —]‘ > 1 (brald
relations of type A);
(3) (0;+1)(0; —k?) =0 for 1 <i <1 —1 (Hecke relations);
(4) Y}Ui:UiY}ifj#Z',i—f—l, 0Yio; =rY; 111 <i<[l—1
If we delete the generators Yiil and the corresponding relations, we obtain a sub-
algebra H. which is the finite Hecke algebra of type A;_ 1. If we also delete the
Hecke relations, we get the group ring of the braid group Bfl.

Definition 2.6. Let k1,2 € C*. The affine Hecke algebra H!
the associative algebra with generators olil, . l , Ylil, . ,YjEl such that

of type B is

KR1,K2

1) the generators ail,. a , Yil Yil satisfy the same relations as
1 - 1 l

those in the definition of H. ;

(2) alal_l = O'l_l()'l =1;

(3) oy01_10101—1 = o1_10101—10y, oy0; = o0y if i # 1 — 1 (braid relations of
type B);

(4) (o1 + 1)(01 — k3) = 0 (Hecke relation);

(5) 0'[1/20'1 —I<61 HQY 5 O'lY;‘:YéO'l 1fl7él
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If we delete the generators Yiil and the corresponding relations, we obtain a sub-
algebra 7—[,{1 «, Which is the finite Hecke algebra of type B;. If we do not impose
the Hecke relations on o; for i = 1,...,1, we get the group ring of the braid group
BlB of type B.

We will need the following lemma later.

Lemma 2.7 (See [KalLu], 4.4). (1) Let Clai",..., 2% be the ring of Lau-
rent polynomials invariant under the permutation action of &;. Then the
polynomial f(/ﬁlYlil, .. .,ijlYil) lies in the center of the affine Hecke
algebra HL for any f(x1,...,7) € (C[x1 ) lil]e,

(2) Let Clzi, ..., aFf W be the polynomzals mvarwnt under the action of Wj.
Then F(RFIYEL. HjFlYil) lies in the center of the affine Hecke algebra
m o for any f(x1 ) ) € (C[xl ,...,xli]wl. Here o; acts by per-

mutation of the indices and oy (xlﬂ) =afl o(af) = aft ifi=1,...,1-1.

3. TWISTED YANGIANS OF TYPE AIII
AND THE REFLECTION EQUATION WITH PARAMETERS

3.1. Yangians for g[,,(C) and s, (C).

Definition 3.1. Suppose that n > 3, A € C. Let {z, }aer be an orthonormal basis
of sl,,(C) with respect to the Killing form and indexed by some set I. The Yangian
Y (sl,,) is the complex, unital, associative algebra generated by elements z, J(z) for
z € sl,(C) satisfying the relations

J(az1 + bze) = aJ(z1) + bJ(22), [J(21), 22] = J([21, 22]),

(1), T2, 28])) + [T 22), T (2, 24])] + [ za), (21, 2))
LS ([zl,za],[[ZQ,Zﬁ],[ZB,ZVH){Z@,ZMW},

a,B,v€l

1
where {zq, 23,24} = 21 Y ves, Zo(a)Zo(B8)Zo(y) and &3 is the permutation group of

{a, 8,7}
Note that Yy, (sl,) = Y, (sl,,) if A1A2 # 0. It will be more convenient to work
with the following slightly bigger algebra.

Definition 3.2. We let Y3 (gl,,) be the algebra which is defined exactly as Yy (sl,),
except that the elements z can be taken in all of gl,,(C) and the set {z, }qer should
be an orthonormal basis of gl,,(C) with respect to the Killing form.

Definition 3.3. The Yangian Y (gl,) is the complex, unital, associative algebra

generated by elements Ti(jr) for 1 <1i,j <n,r € Z>o with T( ) = = 0;; and satisfying
the following relation:
1

(T3 (), Tt ()] = —— (T ()Tt (v) = Ty (v) Tt (w))

where T (1) = 2% T 0= € Y (ghy)[[u=]].

r=0 "1j

The defining relations of Y (gl,,) can be rewritten in terms of the R-matrix

=1-- Z E;; ® Ej;, where Ej; is the usual elementary matrix
i,5=1
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and T(u) = 327, Tij(u) ® Eij € Y(gl,)[[u™']] @c Endc(C") as
R(u — v)Th(u)Ta(v) = To(v)Ti(u)R(u — v).

Proposition 3.4 ([MNQ]). If A # 0, Ya(sl,,) is isomorphic to the subalgebra of
Y (gl,) (denoted Y (sl,,)) which consists of the elements fixed under all automor-
phisms of the type T(u) — f(u)T (u), where f(u) € 1 +u  C[[u™t]]. This isomor-
phism can be extended to an embedding Yy (gln) = Y(gl,). Moreover, if Z denotes
the center of Y(gl,,), then Y (gl,) = Z ®@c Y (sly,).

3.2. Symmetric pair of type AIII in classical Lie theory. Let n > 2 and
let 1 < p < n/2 with p an integer. Denote by O, the n x n diagonal matrix
©, = diag(ei,...,€,), wheree; =1fori=1,...,pand e = —1fori=p+1,...,n
©, can be used to construct a Lie algebra involution 6 of gl,(C): we set (X)) =
©,X0, for X € gl,(C). Let £t = {X € gl,(C)|9(X) = X} = gl, ® gl,,—, and
p={X € gl,(C)|6(X) = —X}, so that gl,,(C) = ¢ ® p. The involution 6 restricts
to sl,(C) and we set &y = €N sl,(C).

Definition 3.5. The pair (gl,,(C), ) (or (sl,,(C), %)) is called the symmetric pair of
type AIIL (This terminology comes from the classification of Riemannian symmetric
spaces by E. Cartan.)

Definition 3.6. The twisted current Lie algebra sl? (C[t]) is equal to {X ® p(t) €
5L, (C) ®c C[t]|0(X) @ p(t) = X @ p(—t)}. gl¥(C[t]) is defined similarly.

3.3. Twisted Yangians of type AIIL. We will denote by T;;(u) the matrix en-
tries of T~ (u).

Definition 3.7. Assume that 7y # 0. The twisted Yangian of type AIII, denoted
B, 7, (n,p), is the subalgebra of Y (gl,,) generated by b1 <i4,j<n,r €L

ij
with bg?) =¢;0;5 and, if r > 1,

|
—

r

IZZ Ele(]: T(;*S) T2 i 7" stlj)Tlg; s— 1)

s=0 k=1 k=1

Definition 3.8. SB;, ,,(n,p) is defined as the intersection of B, r,(n,p) with
Y (sl,).

[V
Il
o

Set bi;j(u) = d;j€ + > ey Tllfrbl(-;)u_r and

B(u) =Y bij(u) @ Eij € B, ,(n,p)[[u""]] ©c End c(C").

ij=1
Then we can express the embedding By, -, (n,p) < Y (gl,,) via
B(u) = T(4)Opry ()T~ (~u0),

where O, -, (u) =1® (0, + 2u™t) € Y(gl,)[[u""]] ®c End (C™).
It follows immediately that the equation

(3.1) B(u)B(—u) = (1 — m3u™?)

is satisfied.
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Proposition 3.9 (Proposition 3.3 in [MoRal). B, -,(n,p) is a left coideal subal-
gebra in Y (gl,) with coproduct given by

Z T’zs Tt] ) ® bst(u)-
s,t=1

Furthermore, we have the following result.

Proposition 3.10. The twisted Yangian By, r,(n,p) satisfies the reflection equa-
tion

(3.2) R(u — v)By(u)R(u + ’U)BQ(’U) = By(v)R(u + v)B1(u)R(u — v),

where Bi(u Z bij(u) ® B ® 1,

me ®1® Ej; € Bn 7 (n,0)[[u™]] @c End ¢(C™)#?

Proof. Following the same steps as in the proof of theorem 3.1 in [MoRal, we are
reduced to proving the following equality:

R(u—v)0L _ (w)R(u+v)02_ (v)=02_(v)R(u+v)0} (u)R(u—v).

p,T2 b,T2 b,T2 b,T2
This can be proved by direct calculation as follows:
(= IR = 00}, (R +0)0] 1, 0
( u—v) Z E;®F )(Z(Q-I—Tw*l)Eu‘@Id)
1,7=1 =1
n
( u+v) Z E;®F )(Z(ei-kq-w*l)ld@Eii)
ij=1 i=1

n
= Z (u2 - 112)(61‘ + Tguil)(ej‘ + T2’L)71)Eii (24 Ejj
1,7=1

n
- Z (u+v)(e; +mou™ ) (e; + v ) E}; ® Eyj
ij=1
3 (e e B ©
ij=1

+ Z (EZ‘ —|— Tguil)(ei —|— Tgvil)Ejj ® Eii
i,j=1
n

= Z (6 + v ) (meu ™ (1 +u? —v?) + ¢ + € (u® —v?))Ey ® Ej;
ij=1

- Z (e; + Tov~ 272+61(u—v)+e](u+v))E”®Eﬂ,
1,j=1
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(w? = v*)6; ., (V) R(u+0)0y, , (u)R(u — v)

D72
:(Z(ei +Tgv*1)ld ® E“)( u+v) Z E;® Eﬂ)
=1 1,7=1
(Z € + Tou” Em®ld)<u—v ZE”@EW)
=1 1,7=1

= 3 0l e+ B @ B
i,j=1

— Z (’LL - ’U)(Ei + T2’U71)(61‘ + Tguil)Eji X Eij
i,j=1

— Z (’LL + ’U)(Ej + Tg’l)_l)(ﬁi + TQU_l)Eij (24 Eji
i,j=1

n
—+ Z (Ei —+ TQU_l)(Ei —+ TQU_l)Ejj (29 E”
i,j=1

= Z (ej + TQ’U_l)(TQU_l(l + u? = 7)2) + €5 + Gi(u2 — 7)2))Eii (%9 Ejj

i,7=1

- Z (6 + 120 (272 + € (u—v) + € (u+v)Eij @ Ej;.
3,j=1
Notice that

(€i+Tov 1) (279 +€;(u—) +ej(u+tv))— (¢ + 7o 1) (27, +ei(u—v)+e€(utv)) =0,
which implies the conclusion. ([l

Theorem 3.11. Assume 11 # 0. The reflection equation (B2), the unitary relation
BI), and bg?) = §;5¢ (1 < i,j < n) are the defining relations for the twisted
Yangian B, -,(n,p).

Proof. The argument is the same as in the proof of theorem 3.1 in [MoRa]. (]

In [MoRa) (sce also [SK]), the authors also consider the algebra B(n,p) which is
generated by bg;) with defining relation given only by the reflection equation ([B.2]).
They prove that, in B(n, p), B(u)B(—u) = f( )Id where f(u) is an even series in u ™1

with coefficients in the center of B(n, p), B(u) is the matrix > ij=1 > g) ®

E;; € B(n,p)[[u"1]]®cEnd ¢(C") and {Bg } is the set of generators of B(n, p). The
quotient of g(n,p) by the ideal (f(u) — 1) is the reflection algebra denoted B(n, p)

in [MoRal. Our twisted Yangian B., -, (n,p) is exactly the quotient of B(n,p) by
the relation B(u)B(—u) = (1 — 73u~2)Id. In particular, when 75 = 0, we get the

algebra B(n, p) studied in [MoRa]. More generally, we have the following corollary.
Corollary 3.12. For 1 # 0 and any 72 € C, By, +,(n,p) is isomorphic to B(n,p).

Proof. Set g(u) =1 — mu~!. An isomorphism v : B;, ,,(n,p) — B(n,p) is given
by ¥(B(u)) = g(u)B(u), where B(u) is defined similarly to B(u). O
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Corollary 3.13 (PBW basis for twisted reflection algebra). The set of ordered
monomials (under arbitrary total ordering) in the generators

WA 0<ij<por ptl<ij<n,

b5V, 1<i<p<j<nor 1<j<p<i<n,

for k> 1 form a PBW-type basis of the twisted reflection algebra By, ;,(n,p).

Proof. Let {bg;)} be the set of generators of B(n,p) as in [MoRal. Using the iso-
morphism in Corollary B12] we have 1/)(61(,?)) = bz(.?), w(bl(;)) = 7{_1(b§;) - TQbZ(»;_l))
for r > 1. The corollary follows from corollary 3.2 in [MoRa]. O

Now define a filtration on By, ,,(n,p) by setting deg(bg)) =r—1forr>1and

deg(bgg)) = 0. Then we can define the associated graded algebra grB;, ., (n,p).
Using the isomorphism 1) in Corollary and the results from [MoRa], section

3.2, we have the following consequence.

Corollary 3.14. We have an isomorphism of algebras

~ - r— r— 7(r)
gl (Clt])) = grBr, ry(nyp), 71 He + (—1) e) Bt by
3.4. MacKay'’s twisted Yangians of type AIII. The twisted Yangians that we
study in this subsection were introduced by N. MacKay in [MalllMa2]. One novelty
here is that the algebras that we define are a bit more general because they depend
on two deformation parameters.

Definition 3.15 ([MalMa2]). The MacKay twisted Yangian Yy, », (gl,, £) of type
ATIT is the subalgebra of the Yangian Y}, (gl,,) generated by the elements E,p, € €

and by J(E;;) with E;; € p, where

~ A A -2 A
J(Eij) = J(Eij) — € <72 + ¥> Eij — zl[ca Eij],

where C = Zf,jzl Ei;Ej; + EZj:pH E;;Ej; is the quadratic Casimir operator of ¢.

We will denote by Y, x,(sl,, £) the algebra obtained by allowing only the matrices
E;j,Ey — Ejj € g for i # j.

Note that, if A; # 0, then }7,\1,,\2 (gln, &) = }71 2, (gln, ©) by rescaling the genera-

>
i

tors.

Lemma 3.16. The MacKay twisted Yangian }7)\1,)\2 (g1, ) is a left coideal subal-
gebra of the Yangian Yy (gly,); that is, A(Yx, x, (8ln, 8)) C Y, (9ln) ®c Y2, 2, (000, €)
where A is the coproduct on Y (gl,).

Proof. The proof is essentially contained in subsection 2.3 in [DMS]. O

Lemma 3.17. The following relation holds in Ugl,: >} _| exEixEyj = %%Eij +
G[C, By, where 1 <i<p<j<norl<j<p<i<n.
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Proof. Assume that i, j satisfy one of the two conditions in the statement of this
lemma:

C.Ejl=( >+ Y | [EwEwmn Eyl

[
M=
+

([Enk, Eij|Exn + Enk[Exn, Eij))

P n
=€ Z(EikEkj + EyiEiw) — ¢ Z (EivExj + Ex;Eir).
k=1 k=p+1

So

O

Proposition 3.18. Let \y =1, 7o = (n — 2p)/2 + X2 /2. The algebra }7)\1,)\2 (gln, ®)
i isomorphz’c to the subalgebra of By, r,(n,p) generated by b(l) with 1 < 1,7 <n
andbyb foradll<i<p<ji<mandall<j<p<i<n.

Proof. The two twisted Yangians }7}\1:17 2 (80, 8) and By, ., (n,p) are subalgebras

of Y(gl,,), and to understand how they are connected, we need to use the following
relation in Y(gl,,) [ChPrl] when i # j:

(3.3) J(Ey) = Z EirEyj,

where we have identified E;i, Ey; with Tz(k1 ), T,S).
We need to know the coefficients of Tvkj (u). A general expression for the coeffi-

cients of Tk](u) can be found in [MoRal, and the first few terms are the following
(see also [MNO]):

T = 7, T = T(2)+ZTM T,

ij

We can now compute that

(3'4) b(l) = EJT(l) + elT(l) + 72513 = (51 + €j>E’Lj + 7'2513
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When 1 <i<p<j<norl<j<p<i<n,we have

(3.5) bl(-?) = (¢ — EZ)TlT( )+ 27'17'2T + €7 ZT 1)T(1 + 71 ZekT 1)T

= —2T16iJ(Eij) + 27’17’2Eij + 7 Z ekEikEkj (using lemma m
k=1

— _2m (J(Eij) te (@ - 72> By - i[o, Eij])

= —ZEile(Eij).

We have embeddings }7)\1,)\2 (gly,®) — Y(gl,) and B, ,,(n,p) = Y (gl,), and the
preceding computations show that the image of the former lands in the image of

-2 A
(nTp) + 72 (and 7 # 0 as usual) and that it can be identified

with the subalgebra of B, ,,(n,p) generated by all bgj) with 1 < 4,57 < n, and by
b(2)W1th1<z<p<j<n1<]<p<z<n ]

the latter if 5 =

Corollary 3.19. Suppose that n > 3 and A2, T2 are related as in Proposition 318
Then Y1 x,(sl,, &) is equal to SB, +,(n,p).

Proof. By definition, the algebra Y ,(sl,, %) is generated by elements in £, and
by J(Ez]) with Eij € p.

Then from B.4), (BH), it can be identified with the subalgebra of SB;, ,,(n,p)
generated by

Y (1<i#j<pp+1<ij<n), by —bf) (1 <i#j<n),
B (1<i<p<j<n 1<j<p<i<n).

Thus Y7 »,(sl,, %) C SB; ,(n,p). Both have filtrations inherited from the
one on Y(gl,) obtained by giving tg) degree r. So we have gr(Y x,(sl,, %)) C
gr(SBy, 1+, (n,p)) = Usl? (C[t]), where the last isomorphism can be deduced from
section 3 in [MoRal and from Corollary

Usl? (C[t]) is generated as an algebra by its subspaces spanned by £, and p ®¢ Ct,
so gr(Yix,(sl,, %)) contains generators of Usl? (C[t]), and hence both are equal.

It follows that gr(Yi x,(sl,, %)) = gr(SB;, -, (n,p)) and therefore Y z,(sl,,t) =
SBy, (0, p). O

3.5. Presentation of the twisted Yangian of type AIII by generators and
relations. In this section, we give a presentation in terms of generators and rela-
tions of the Mackay twisted Yangian )7,\1=17 A2 (8ln, ) with n = 2p. The initial idea
which led to this section is the observation that an isomorphism given explicitly in
[GHL] allows one to view 5[gp((C[t]) as being isomorphic to sl,(C[t] x I'). We can
then apply ideas from [Gu2l[Gu3] to obtain a presentation for a deformation of the
enveloping algebra of sl ((C[ ] xT') & CI, (I, being the identity matrix) which turns
out to be isomorphic to Y,\1 1,20 (815, €) for € = gl,(C) & gl,(C).

We introduce an action of I' on the polynomial ring C[t] (where I" = Z/2Z): if
v €T, v # 1r and p(t) € C[t], then v(p(t)) = p(—t). We can form the semi-direct
product (also called smash product) C[t] x I". Moreover, the kernel of the universal
central extension of sl,(C[¢] x I') is isomorphic to HC1(C[t] x I') and it is known
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that HC,(C[t] xI") = 0. Since C[t] x I is not a commutative ring, it may be a good
idea to recall the following definition.

Definition 3.20. Let 4 be an associative algebra over C, not necessarily commu-
tative. The Lie algebra s[,(.A) is defined as sl,(A) = [gl,(A), gL, (A)]. sl,(A) is also
the space of matrices in gl,(A) with trace in [A, A].

Let us assume that p > 4.

Proposition 3.21 ([Gu2]). The Lie algebra sl,(C[t] x T') is isomorphic to the
Lie algebra generated by the elements Fop(t), Fup(y) fory €T, 1 <a #b <p and
satisfying the following relations: If 1 < a,b,c < p are all distinct and 1 < a,c,d < p
are also all distinct, and if v,v1,7v2 € I', i = 0,1, then

[Fab(t)a FbC(t)] = [Fad(t)a ch(t)], [Fab(l)a FbC(t)] = F(w(t);

[Fur(7"), Foe(t)] = [Faa((=1)'t), Fae(Y)] v # 1r, [Fan(n), Foe(2)] = Fac(1172)-
If1<a,byc,d<panda#b#c#d#a, then

[Fab(t)a ch(t)] = Oa [Fab(ry)v ch(t)] = 07 [Fab(71)7 ch(’)?)] =0.

In [GHLI, it was explained that sl,(C[t,¢~!] x T) is isomorphic to sl,, (Clw,w™1])
(w should be thought of as u?), so that sl,(C[t] x ') gets identified with the Lie
subalgebra g of sl,(C[w,w™!]) spanned by all matrices of the form E;;jw", (E; —
Ejj)w” for any 1 <14 # j < nif r > 1 and all the matrices E;;, E;; — E;; with
1 <i# j <n except those with p+1 <i <n,1 <j <p. The next proposition
was missed in [GHLJ.

Proposition 3.22. sl,,(Clw*1]) is isomorphic to sl (C[t*!]) and g is isomorphic
to sl% (C[t]).

Proof. An isomorphism p : sl,(Clw,w™']) — sl (C[t,t~!]) can be described ex-
plicitly in the following way. If ¢; = €;, then p(E;jw") = E;;jt*"; if ¢, = —1 and ¢; =
1, then p(E;jw") = Ej;jt* Tl if ¢, = 1 and €; = —1, then p(Ejw") = E;t> 1. O

Let ey and e; be the two primitive idempotents of C[[']. Composing p with
the isomorphism sl,(C[t,t71] x I') — sl,(Clw,w™1]) given in [GHL] yields the
isomorphism 7 : s[,(C[t,t71] x T') — sl%(C[t,t~!]) given by

T(Eijt* eq) = Eijt”", 7(Eijt* e1) = Eiypjipt™,

2 1 2 1 2 1 2 1
T(Eijt*  eg) = Biyp it 7(Eit? ) = By jipt*

which restricts to an isomorphism s[,(C[t] x T') = sl¢ (C[t]).

The previous proposition implies that Y, i, (s0,, &) can be viewed as a defor-
mation of Usl,(C[t] x T'); this is part of the content of Theorem below. We set
Hab(’yz) = Faa(’yz) - be(’yl)vi =0,1.

Definition 3.23. We denote by Yfz the algebra generated by elements F;(t) with
1<a#b<pandby Fu(y) fory €T, 1 <a,b < pand satisfying [F,p(1), Fpe(t)] =
Foc(t) = [Fap(t), Fye(1)] if ¢ # a, b and the following relations:
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If 1 <a,b,c <p are all distinct and 1 < a,c¢,d < p are also all distinct, then
[Fab(t)v Fbc(t)] - [Fad(t)v ch(t)]

=" (Hua(er) Fus e0) Frelen) — (Fiy(eo) Fjn(eo) = Fis(eo) Fra(eo)) Fuclen))

=1
+ {same with eg <> e1} + 2 o (Hpa(e1) Fuc(eo) — Hpa(eo)Facler)).

For a # b # c,a # d # c and for v,v1,7% € ', i = 0,1,

[Fab(’yi)v Fbc(t)] - [Fa ((_1)zt); ch(’Y)] v 7& 1F7 [Fab(’yl)a Fbc(72)] = Fac(7172)-
If1<a,bc,d<panda+#b+#c+#d+#a, then
[Fab (1), Fea(t)]

= Z (Fej(e1)Fjp(er1)Fua(eo) — Fuy(e1)Faj(eo)Fja(eo))

+ {same with eg <> e1} — Ao Fhq(ep)Fep(e1) + MoFaa(er) Fep(eo)-
If a # d,b # ¢, then

[Fap(7)s Fea(®)] = 0, [Fap(71), Fea(r2)] = 0.
Finally, I, = >-%_, F;;(1) is central.

Theorem 3.24. The algebras Y/C and §7>\1=17>\2 (g1, ®) are isomorphic.

Proof. We can define an algebra epimorphism ) : Y)\i — ?Al:l& (gln, ) by setting
V(Fap(Ir)) = Eap + Eatpptps ¥(Far(7)) = Eap — Easpprp for 1 < a,b < p and
Y(Fap(t)) = J(Eaptp) + J(Eagpp) for 1 < a # b < p. To check that this does in-
deed define an algebra homomorphism, one should use equation ([3.3]) along with the
reflection equation and the unitary condition. We will not include the relevant com-
putations. Passing to the associated graded algebras, we obtain a homomorphism
gr(vy) : gr(Yfz) — gr(Ya, =1, (gln, t)). Here, the filtration on Yy, =1,x,(gl,, ) is the
one induced from the filtration on Yy, —; (gl,,) obtained by giving J(E,s) degree one.
We thus have an embedding gr(f/,\lzlv\,z (gln, 8)) — gr(f’,\lzl(g[n)) and a quotient
map U(sl,(C[t] x T') © CI,) — gr(YY) (see Proposition B:2T). The composite of
all these maps is the monomorphism $(sl,(C[t] x I') & CI,) — U(sl,,(C[t]) & CI,)
which identifies $4(sl,(C[t] x I') @ CI,,) with $(sl? (C[t]) @ CL,). (See Proposition
and the paragraph just below it.) Therefore, gr(¢) is an isomorphism, hence
S0 is 1. O

4. DRINFELD FUNCTORS

4.1. Preliminaries. Let the symmetric group &; act on the space (C")®! by per-
mutation of the I tensor components. If E;; € gl,,(C) and v € (C")®!, we denote
by Ez(]k) (v) the element obtained by applying E;; to the k-th factor in the ten-
sor product. Then, as an element in Endc((C")®!), the permutation o1 € &;
equals > E-(E)E](-f). Set P, = Y. El-(f)EJ(fH) € Endc((C™)®!) and Ij =

ij=1ij ij=1

S EW @ E;; € Endo((C)®!) @¢ End ¢(C).

i,j=1 "3
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Lemma 4.1. View Py, as the linear operator P, ® 1 € End ¢(C™)®! ®c End ¢(C").
We have

Trt1,Pr]l = —[Trs Iet1],  [Tns Pl = [T, Tiga)-

Proof. The proof is based on direct calculations:

[Ik:+17Pk Z E(k) ® E(k-l—l) ® Eg — Z E(k ® E(k+1) ® Eg,

s,t,r=1 s,t,m=1

Tk, Inyr] = Z Est ®Etk+1 ® Esm — Z E ®Ek+l)®Et

s,t,m=1 s, t,r=1

and [Ik,Pk} = IkPk — Pka = Pka+1 — Ik+1pk = _[IkJrl,Pk]. O

Let v, € W; act on (C™)®! by multiplication on the k-th component by the matrix
©, (this operator will be denoted by @(k)) This defines a W;-module structure on
(C™)®!. Thus for any H, -module (resp. H. , -module) M, the space M ®c (C™)®!
has an &; (resp. W;) module structure obtained from the diagonal action. From
now on, let e =1 or —1.

4.2. Drinfeld functor for Y (gl,). In this section, we recall the construction of
the Drinfeld functor in type A.
Let M be any H. -module and set DA(M) = M ®&¢ (C™)®L. For constants A and
r (k=1,...,1), define

T(u) = T} (u) - - T (u) € H, [[u™"]] ®c End ¢((C™)®") ®¢ End ¢(C"),

where T (u) = 1+ QI k=1,...,1

U — MYk + ck N
Then the map T'(u) — T*(u) defines an action of Y (gl,,) on DA(M). As was

mentioned in section I, D4(M) has a &;-module structure. Define the space
DA(M) as

DAE(M) = Z Im(o , where Im means image.

Proposition 4.2 ([A1], Proposition 2, [D1], Theorem 1). Assume ¢ = ¢ for (k =
1,...,1) and k1 # 0. Let M be any left H., -module. When X = £/k1, the map
T(u) — TM(u) defines an action of Y (gl,,) on DA(M). Thus we have a functor

DA . Hfﬁ1 —mody, — Y(gl,) —modr, M DA’E(M)'

When e = —1, a condensed version of the proof is contained in [A1]; we give a
few more details for completeness.

Proof of Proposition 42l We need the following relations:
Lioj=0;1;, it g #i1— 1,1, TLjo; = 0141, Lioi1 = 0i11; 1.

B We can write Hizl(u + ¢ — Ayp)TH (W) Ty (u) - - - TN (w) = T (u) - -~ T (u), where
TM(u) = u+c—Ayp + 1@ Ti. Since [Th_; (u-+c—Ayy) is in the center of Hfil (Lemma
24), it is enough to show that, for A\ = ¢/k1, the image of Ty (u)--- T} (u)oy, —
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o, T3 (u) - - - T)(u) is contained in the image of oy —e. First notice that o commutes
with T2 (u) for s # k, k + 1. We also have

BT (W
=Tp(u) (o (u+ ¢) — oAy + M1 @ Py, + 03,1 ® I,)
=Tr(w)o(u+c— Myx + 1@ Ij) + Tp(u) kg @ Py
= (ok(u+¢c) = Aopyr+1 — A1 QP + 0kl @ Ipy1)(u+c— Ayp + 1 ® I)
+ T (u)A\k1 @ Py
=op(ute— A1+ 1@ Ip1)(u+c— Ayg + 1 @ I)
— My @ Pr(u+c— Ay +1® Ig) + Tp(u)Aky @ Py,
= 0. T (w) Ty () + 05 @ [Tpt1, Ix) + A1 @ [Ig, Py
= alﬁz(u)fgﬂ(u) + (0 — Ak1)1 ® [T41,Ik] (by lemma [4.7)).
Thus we have
T (u) - TN w)or — 0 T1 (w) -+~ T} (u)
= (o3 = Aw1)TY (W) - Tpy (W) [Trt 1, i Tigo (w) - T (w).

We get the desired conclusion when A\k; = €.
As for homomorphisms, suppose that f € Homy (M, Ms). Then f extends
K1

to a homomorphism f ® 1 : DA(M;) —s DA(Ms); since f is a homomorphism of
modules over H, , (f ® 1)(25;} Im(o; —€)) C Zi;i Im(o; — €). O

4.3. Drinfeld functor for MacKay’s twisted Yangians. In this section, we
explain how to construct a functor from the category of modules over the degenerate
affine Hecke algebra of type BCj to the category of modules for the MacKay twisted
Yangian 37)\1,& (gln, ).

Consider a left module M over Hfmm. From Section [4.2] since Hf{hm2 contains
H., , we know that D*(M) is a left module over Y (gl,). So, by restriction, it is
also a left module over }7,\1,,\2 (gln, ©).

Now consider the following space:

-1
DPC(M) = D (M) /Im(y —¢) = M@c(C")*/ <Z Im(oy — ) +Im(y — 5)) :
k=1

DB%2(M) is not a left module over Y(gl,), but we have the following result
which is an analog of theorem 1 in [Dr] and of Proposition

Theorem 4.3. DBC¢(M) is a left module over ?)\1’)\2 (gly, 8) if Ay = K1 and Ao =
ko. Therefore, we have a functor

DBCe i HL  —mody — Vi, x, (g, £) — mody.

R1,R2
If f € Homﬂf{1 v (My, My), then DBCE(f) : DBCs(M;) — DBY2(My) is defined

by DECE(f)(m @ v) = f(m) @ v. Moreover, if p,n —p > 1+ 1, DB provides an

: Py ; 1
equivalence between the category of finite dimensional modules over H,, ... and the

category of finite dimensional modules over 37)\1,& (g1, &) which are of level | in the
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sense that they decompose over gl, @ gl,—p, as direct sums of submodules of (Cm)®!
(so in particular the identity matriz I, acts by the scalar l).

Proof. Tt is enough to show that the generators J(Ei;) € Y, a,(gln, £), which act
on D4#(M) by Proposition 22} descend to operators on DZ¢(M). Set

Ry, = ——% - Z%k”ﬂc%
Hék

It can be deduced from [D1] (or from formula (B3] and the proof of Proposition
2) that J(E;;) with 1 <4, < n acts on D4¢(M) in the following way:

l l

k—1
1 1 1
J(Ej)(mev)=ch Y. <—y LEPILIEE DY ffsk) m® B} (v).
s=1

k=1 s=k+1

For E;; € p, we can make the following computations:

1
Zm ® RkEgC) (v)
k=1

=— —Zm@ Hg@(k + K1 Z Z E t(f)@l()h)@;k) El(jk)(v)

h=1 s,t=1
h#k

2 k=1 h=1 t=1
h#k
KRo€ K ! - h (k)
2 1
_ g Ov) -5 Zetqm@(Ez(t)Etj )(v)
k,h=1t=1
l n
+ 2y aame BB ()
k=1t=1
K1€; P -
= — (kg +r1(n—2p))Eij(m @ V) : (Z EuEy— Y EztEtj> (m®v)
t=1 t=p+1
(using Lemma B.T7])
i i (n—2 i
— - St w2 By(m vy + 5 (2B - S1C, B (mav)
—2
= (ei (% + w> B+ Ll E”]> (m®v).
Since

A A1(n —2p A
J(Eij) = J(Eij) — & <72 + %) Eij - zl[ca Eijl,
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we see that if Ay = K1, Ao = Ko, we can define the action of j(E”) on DA¢(M) to
be

!
J(Eyj)(m@v) = Z (yk+_20'sk Z Usk+Rk>m®E( )
P

s=k+1

l

(4.1) yrm @ Ei(f)v.

k=1

We now want to see that it descends to an operator on DB (M), so we have

to show that it stabilizes the subspace V; spanned by ym® v —em ® @;l)v for any
m € M,v € (C™)®:
J(Ei;)(ym @ v—em @ 0V)v)
l
=c Z(ﬂkmm ® Ei(f)v —EYrm ® Ei(f)(%](gl)(v))
k=1

—EZ 1)%k w@‘kmé@Ei( )V—sykm@)@(l)E(k)( )) € VL.

We have shown that j(Eij) descends to an operator on DB(M). The space

DBC¢(M) is thus a left module over the MacKay twisted Yangian }7}19\2 (gln, ®).
The proof that DB provides an equivalence of categories follows from similar
arguments as those used in [ChPr2,[Gull[VaVa], so we just outline the main ideas.
The tensor space (C")®! decomposes as a direct sum of irreducible modules over
GL,(C)xGL,,_,(C)xW (see [ATY] for a precise statement). Hence any left module
N over Yy, ,(gln, €) of level [ is of the form N = M ®¢ (C")®!/ Zl_l Im(o; —e) +
Im(y; — €) for some W;-module M. To transform M into a module over Hfg1 fg
we need to find commuting operators Vi € End¢(M) for k = 1,...,1 such that
Vi,.. ., V,01,...,01-1,7 satisfy the defining relations of Hm «, given in Lemma
To determme how )Y; should act on m € M, pick a primitive tensor v =
Vg, @+ @ vy, with ky,. ..,k all distinct and {v, ..., v,} the standard basis of C”
and consider how .J| (Ei ;) acts on it, where i # ki,..., k. (Here, the assumption
that n > max{p,n —p} > [+ 1 is needed.) To deduce that the commutator [V;, ;]
(for, say, i < j) is given by formula (1)), one should apply [J( Eu,b;)s J(Eaj,bj)] to
m® v for an appropriate choice of a;, b;, a;, b;, v (for instance, take b; = k;,b; = k;
and ki,..., ki, a;,a; all distinct). The assumption p,n —p > [ + 1 ensures that
DB ¢(M) is non-zero if M is non-zero; see [ATY]. O

4.4. Drinfeld functor for twisted Yangians of type AIIIL. In this section, we
will construct a functor from the category of left modules over the degenerate affine
Hecke algebra of type BC to the category of left modules over the twisted Yangian
of type AIII which was introduced in Section B3l We will use the same notation
for this functor as in the previous section.

For any 3 € C, denote by Bg(n, p) the twisted Yangian B., -, (n,p) with param-
eters 7 = 1,79 = (3. For any left Hfﬂm—module M, view it as an H., -module and
set DBCE (M) = DAS(M) /Im(y; — ).



2534 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

For k =1,...,1, define the following elements in H, . [[u~!]]©cEnd ¢((C™)®")®¢
End ¢(C™):

1

I, SMu)y=1-—

Th(u) =1+ ® Ig.

Lemma 4.4. We have Tp(u)Sp(u) = 1.

Proof. Using Iy - I = nly, we get

1 1
Ty (u)Sy =(l1+ —77—®I l-—7——®I
k(w)Sk(w) < +u—n/2—)\y;C @ k> < u~+n/2 — Ay @ k)

u+n/2—Ayp —u+n/2+ Ay —n

=1 (u—n/2 = Aye)(u+n/2 — Ayg)

® I =1.

Set
(4.2) BN(u) = T (u) - - T (u)Op 5 ()7 (—u) - - - 87 (— ).

Here we regard B*(u) as an n x n-matrix whose entries, denoted bfj(u), are power
series in u™'. O, g(u) is shorter notation for 1 ® 1 ® 0, (u) € H,  [[u™!]] ®c
End ((C™)®") @¢ End (C™).

From Proposition [£2] when \ = =, the map T(u) — T*(u) defines an action
of Y(gl,,) on D4(M), so from the definition of Bs(n,p) and Lemma 4] the map
B(u) — B*(u) defines a representation of Bg(n,p) on the same space.

n—2p

2
the map B(u) — B (u) defines a representation of the twisted Yangian Bg(n,p) on
the space DB (M).

Theorem 4.5. Let M be any H! -module and B = ;—2 +
K1

R1,Rk2

. If)\=€/K1,

Proof. Assume ¢ = 1. (The proof is similar when ¢ = —1.) From Lemma 24 we
know that the element HZZI ((u—n/2)* = A?y}) lies in the center of H, . Thus
we can multiply both sides of [£2]) by this central element and we get

l
B Nu) = [T ((u—n/2)* = Ny)BNw) = T} (w) -+ TNw)Op,5(w)S (—w) - 57 (),
k=1

where T) (u) = u—n/2 = Ayp + 1@ Ik, Sp(—u) = u—n/2+ Ay + 1@ Ij. It is enough
to show that the commutator of B*(u) and ; on D4#(M) has its image contained
in the image of v, — 1.
k k
For each Ip, let I¢ = Y2, ) ELY @B+, i oo B @ By and I = 1, — I3
Notice that we have the following commutation relations:

Wl =Ty, if §#1 Iy =yI8 Iy = — Il [n,0ps(u)] = 0.

From these, we can see that ; commutes with f’fg and 52 if k#£1L.
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Thus we only need to check the commutator of v, and T} (u)0, s(u)S; (—u) on
DAS(M). Set R=u —n/2+1®I¢ Then [R,v] =0, [R,0,3(u)] =0.

T} (w)Op,5(u)S} (—u)y
=R- Ay +121)0,5u) R+ Iy + 1210y,
=R =My + 1010, 5(w) (MR + M—ny + k2) ® OF —y(1® 1))
=R- Ay +101)0,s(u)nR - Ay — 10 1I7)
+R= Ay +1®1])0,5(u)( Ak @ OF)
= (MR = A=y + k2) ® @;(f) —n(1©17))Op5(u) (R — Ay —1© 1))
+R= Ay +1®1))0, 5(u)(As2 ® OF)
=R+ Ay — 1@ 1))0,5(u)(R— Ay — 1®I7)
— (M2 @ 0)8, 5(u) (R — Ay — 1@ I7)
+R= Ay +1®1))0, 5(u)(As2 ® OD).
Since
R+ Ay —1 @ 1))0p5(u) (R — Ay — 1@ I7) — T (1) Oy, 5(u)S} (u)
=R+ —191)0,5u) (R -y —1©1))
—(R= Ay + 120 1)0,5(u)(R+ Ay + 10 I7)
=2 (RO, 5(u)(1®I}) + (1®I7)Op 5(uw)R)
=-2(0,+pu N (u—n/2+1@I})(1®1I))
+(=6p + Bu (1@ I})(u—n/2+1®I}))
= —2(B(2 —nu™ NI} + ©,(I{ T} — I7T}) + fu” (IF 1] + I/}))
=282 —nu"H(1® 1Y)

—2(0, + fu! ( S EV9E;+(n-p) Y Ei(]l-)®Eij)

i<p,j>p i>p,j<p

+2(0, — fu”? (n p) Y. EY@E;+p Y. E”®E)

i<p,j>p i>p,j<p
—2(28+2p —n)(1®1Y)
and
~(M2 @00, s(u)R— Ay — 1@ I)) + (R— Ay + 1 ® I})0,, 5(u) (k2 @ O)
= (M2 ® 000, 5(w)(1® 1) + (1® I})0, 5(u)(As2 @ OL)
= 2kp(1 ® 1Y),
we have
= o) = o)
T (1) Op, 5 (1) 8] (—u)vi—7T; (u)Op 5 (u)S7 (—u)
= —2v(28+2p —n)(1®IY) + 2k (1 ® IV)
= 2)\&2(1 — ’yl)(l & I?),
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-2
because 8 = ;724—”2‘”
1

coefficients of T} (u)O, 5(u)S;(—u) descend to endomorphisms of DBS¢(M). O

and A\ = Ril This proves that the entries of the

The Drinfeld functor is compatible with the coproduct in the following sense.
Recall Lemma [3.T6] and the observation after Lemma

Proposition 4.6. Choose l1,ly € Z>1 such that Iy + 1o = I. Let My be an
Hfgl—module and let My be an H2 _ -module. Set My, ® M, = H

! !
K1,K2 K1,K2 ®I-I,{l1 ®H2 xy

(My ®c My), which is an H, . -module. Then DBY#(My ® Ms) is isomorphic to
DAE(M;) ®c DBY#(My) as a module over Bg(n,p), where DA (M) @c DBC#(My)
becomes a left module over Bg(n,p) via the coideal structure given in Proposition
30

Proof. As Wi-modules, H, = C[W] ®c[6,, 19cCIWi,] HY @cHZ . . so DPO(My o
My) = DA#( M) @c DB#(Ms) as modules over gl, ®gl,—,. To complete the proof,
it is enough to check that the action of B*(u) on DP%#(M; ® Ms) comes from the
coproduct A; this follows from Proposition and formula (Z2). O

The following theorem was proved in [Nal] by M. Nazarov. An analogous result
also holds for Yangians in type A [Ar] and for super Yangians of type @, [Na2].
Actually, the proof presented below is similar to the proof of theorem 5.5 in [Na2].

Theorem 4.7 ([Nall). Let x1,k2,A, 0 be as in Theorem Bl Let M be an irre-
ducible module over Hfihm. Then DBC(M) is either O or an irreducible module
over Bg(n,p).

Proof. One of the ideas is to reduce to the case of the twisted current algebra.
Suppose that DBS¢(M) # {0} for some irreducible module M over H! We want

K1,k2°
to show that DP¢(M) is irreducible. Let Ny € DB#(M) be a subspace preserved
by the action of Bg(n,p). Since we have gl,(C) & gl,,—,(C) C Bg(n,p), Ny is also
preserved by gl,(C) @ gl,,—,(C). From the classical Schur-Weyl duality between
90, (C) @ gl,,—,(C) and W; (see [ATY]), there exists a W;-submodule My of M such
that Ny = DP®¢(Mj). Assume that for any non-zero vector b € M, the image of
the subspace Cb ®c (C™)®! is not zero in Ny. Notice that since M is irreducible,
we have H! - My = M. We only need to show that Ny generates DP¢(M)

K1,R2

under the action of Bs(n,p). Let M’ = H ®cw,) Mo = Clys, ..., yi] ®c Mo be

Ki1,Rk2
the left module over Hfﬂm induced from My. Then M is a quotient of M’. After
identifying My with the submodule 1 ® My C M’, we see that it is enough to show
that DBC¢(1 ® My) generates DPS¢(M’) under the action of Bg(n,p).

Define a grading on H by letting deg(y;) =1 for i =1,...,1, and deg(c) =0

K1,R2
for o € W;. Then M’ becomes a filtered module. This induces a filtration on
M’ ®@¢ (C™)®! and so on the quotient DZY¢(M’) which is compatible with the one
on Bg(n, p) defined in SectionB.3l After passing to the associated graded spaces and
using Corollary [3.14, we are reduced to proving the theorem with H replaced

K1,k2
by gr Hf,ilm =~ Cly1, .- ., 5] x Wi, Bg(n,p) replaced by gr Bg(n, p) = Ugl¥ (C[t]) and

M’ replaced by Clg,...,71] ®c My. Here we use §; to denote the image of the
element 3; in gr H! Set W = DBYS(Clgy, ..., 5] ®c Mp). We only need to show

K1,k2°

that DBY¢(1 ® My) generates W under the action of 4Ugl? (C[¢]). The rest of the
proof follows the argument in [Na2]. O
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In light of the previous theorem, it may be useful to have a criterion which gives
a sufficient condition for certain modules over the degenerate affine Hecke algebra
to be irreducible. Such a criterion for principal series modules is proved in [KrRal;
see also [Ka] for the analogous result for affine Hecke algebras

Definition 4.8. Let a = (ay,...,a;) € C! and let Ca = Cly1,...,u]/(vi —a:)l_;.
The module H, . ®c[y,,....;u) Ca is called a principal series module and is denoted
M,.

Theorem 4.9 ([KrRal). M, is irreducible if and only if a; # ke Vi=1,...,1 and
ai:I:aj #Hl,—/ﬁil\Vl <1<y <lI.

Combining theorems .7 and 9] we obtain a family of irreducible finite dimen-
sional representations of Bg(n,p).

4.5. Compatibility of the two Drinfeld functors. In this section, we will show
that the construction in Section F.4] recovers the one in Section 3l This is to
be expected in light of Proposition B.I8] but doesn’t follow immediately from this
isomorphism since it is necessary to find an explicit formula for the operator through
which bg) acts (if possible in terms of g, instead of y;) and then compare it with

the formula we already have for J(E;;), namely (@), which involves .
Let us denote by “=” the equivalence modulo u~3. We have

BN (u) = (1 +u @I +u? (g + Ayl) ® 11)
n
~~-(1+u_1®11+u_2 (5+>\yl) ®Il)

(O +pu ) (14wt e+ (5 -du) @)

€
)or)

n
~-~(1—|—u_1®11—|—u_2 (5—)\?;1

l
=0, +u? (ﬁ +1® ) (k0 + @plk)>

k=1

l
+ u? 2ﬁ<1®21k>+ > (189 LI)e,

k=1 1<k<s<l

l l
+ Y o,(l@LI,)+ (1®Zlk> 0, <1®ZIS>
k=1 s=1

I>k>s>1

143 320 ((5 ) o 1) + (5 +w) o) e1) )

So if we set BN(u) = Y27, b (u) ® Eij and by (u) = 3272 bg)u_r, we have

l
o0 =iy, oY = B+ () 1@ B

ij
k=1
)

In order to calculate b;>", we need the following lemma.

I'We thank M. Nazarov for bringing Kato’s theorem to our attention.
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Lemma 4.10. Assumel1 <i<p<j<norl<j<p<i<n. As operators on
(C™)®! we have

=—a| Y. Lil)o,+ Y. 6,(LilL.)

1<k<s<I I>k>s>1 i

l l l
(4.5) Z Z Okt VeV + (2P — ) vk Ez(]k) =6 ((Z Ik) Op (Z IS)) '
k=1 s=1 ij

k=1 t=1
t#£k

Here by (+);;, we mean the (i, j)-th entry, i.e., for an element G € End ¢((C")®!) ®¢
Endc((Cn) G = Zz] 1( )ij X EZ]

Proof. Since o4, = Z" Er(ﬁ?,mz ® E,(,]fg,ml, we can rewrite the left hand side

mi,mo=1
of [@2) as
_Z Z EMSrZEm] + Z Z EMSrZEm]

s>k m=1 s<km=1
On the other hand, we have
n
SLICERED ERRCAED Dl 0 SERD o) oo P
k>s k<s i,7,m=1 \k>s k<s

which implies the equality (£4) (after switching k and s) since ¢; = —e;.
Similarly, the left hand side of (@3] can be written as

Z Z em&E k)E(S ZezE(k )

k,s=1m=1

s#k
On the other hand, we have
l l n
k s
(Lu)o(50) -5 5 antiefon X 5 anon,
k=1 s=1 s#k i,j,m=1 k=114,j,m=1

which implies the equality ([@3]). O
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Now from (3] and the previous lemma, we have, for 1 <7 <p < j < n or
l<j<p<is<mn,

l

1 l k—1
k k
bg? =20 E Ei(j) — €€ E (- E Otk + E :Utk> ®Ei(j)
k=1 k=1 t=1

t=k+1

l l !
+€ie Z Z TVt + (2p —n) | ® Ez(Jk) —2Xe; Z Ye ® EZ(Jk)
k=1 \ t=1 k=1

t+k
!

k—1 l
—2eiz ()\y;ﬁ—gzotk—g Z Otk
t=1

k=1 t=k+1

l
€ 2p—n
—5201@75%%4-6(— 5 —5) Yk ®Ez~(j]-€).

t=1

t£k
If we take A\ = ¢/k1, B = ka/2k1 — (2p — n)/2, we have

1 k—1 l
K K
Sﬂlbz('?) = —2¢ E (Z/k + 71 E Otk — 71 E Otk
k=1 t=1 t—kt1
(4.6)

! !
K1 %) k ~ k
—gzﬁkt%%— 5 Yk ®Ei(j) = _26izyk®Ei(j)-
ik =
Comparing B4), B3), @I) and @6, we have the compatibility of the Drin-

feld functor for the twisted Yangian of type AIII and of the Drinfeld functor for
MacKay’s twisted Yangian.

5. FOCK SPACE REPRESENTATION FOR THE TWISTED YANGIAN B, . (n,p)

5.1. Preliminaries. We will need to work with a different presentation of the
degenerate affine Hecke algebra of type BC;.

Definition 5.1. Let H! be the algebra generated by the group algebra C[W/]

K1,Rk2
and a set of pairwise commuting elements g, ..., %; such that

Uz’gi — gi-}-lo"i = K1, O'iyj = gjai lfj # ’L,l + 1,
Y+ i = K2, Ny = gim if j# L

Lemma 5.2. H is isomorphic to H!

K1,k2 —K1,k2°
Proof. An isomorphism Hl_mm‘ — I:Ifﬁ’,,€2 is given by ¥; — Yr—it1,% — Vi—it1, 1 <
i1 <land by ;= o;_; for 1 <i: <[l —1. [l
H. ., acts on P = C[2f, ..., 2" in the following way: the action of o € &,

is by permuting the variables ziﬂ; the action of v; is by sending ziil to zfl; the
commuting elements ¢1,...,%; act via trigonometric Cherednik-Dunkl operators
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D;; of type Ci:

0 K1 K1
Di,zzzia—zi-i- Z ﬁ(l_gik)_ Z —— (1 —ow)

\<icw<r L E 2k

K1 K2 . K2
+ Z 1_7%(1 — OikYiTk) — 1= .2 (1=7)— (G -1k + bR
1<k#i<I %
Remark 5.3. Here we make a rather unusual choice of simple roots for a root system
of type Cj: ¢, — €41 fori=1,...,1 —1 and —2¢.

Because of Lemma 5.2 any module over H, , can be viewed as a module over

H', ., We thus have a version of the Drinfeld functor with H,, . instead of H. . .
However, it will be necessary for us not only to change the degerate affine Hecke

algebra, but also to consider a slightly different twisted Yangian.
Definition 5.4. Let Bg (n, p) be the coideal subalgebra of Y (gl,,) generated by the
coefficients ngr-) of the entries of B(u) which is given by B(u) = T~ (~u)0, sT(u).

Bg(n, p) is isomorphic as an algebra (but not as a coideal subalgebra) to Bs(n, p)
via the automorphism of the Yangian given by T'(u) — T'(—u)~".

Sete=-1,kp=1,A=1and ="+ ”_sz. (Here we view k1 and ko as the
parameters of I:Ifmm.) If we set

-1
DP%"Y(P) = P &c (C)®/ <Z Im(e, +1) + Im(y; + 1)> !
k=1

an analog of Theorem holds and we have an algebra homomorphism
pi,—1 : Bg(n,p) — Endc (DB "1(R))

given by p;_1(B(u)) = él(—vu)él_l(—u) < S1(—u)O, 5(u) Ty (u)To(u) - - Ty (u) as in
equation [@2)) with A = 1. T;(u) is defined as T;(u), but with g; instead of y;, and
similarly for S;(—u).

As vector spaces, P, Q¢ ((C”)®l ~ ®é:1 ((C[Zlil] Rc (C") Let e, (’17 =1,...,n) be
the standard basis for the vector space C" and set e, = z‘ke,, for k € Z. Then
{eq x|l <n < n, k€ Z} forms a basis of C[zF!] @c C" and {e,, 1, @ €y @+ @
em |l <mi <n,k; € ZVi=1,...,1} forms a basis of P, ®c (C")®!. The action
of Wi on P, ®@c (C")®! can be written as
Ol Cnky Dy ke @Dl gy €0 (1),ko(1) ®ena(2)7ka(2) ®-- '®e%(z)7ka(z) for o € &y,

Ny kg @ Cyky @0 Q) kg 7 Cpy kg @ gy @0 @ €y -

Let V/{ be the subspace of /\é:1 (Clzf') &c C") spanned by {ep, iy A€py s A A
en ko |ki € Zs0,mi = 1,...,n} where ) is the usual wedge product. (If V! = (C")®!,
then Vg is its affinization P, ®c (C™)®, but we will not use this notation here.)
The quotient map P, ®c (C™)®! — DBCu~1(P)) induces a vector space isomorphism
between V/\ and DBC:—1(P)). This allows us to view VY as a representation of
Bg(n,p). We also use p;_; to denote the algebra homomorphism Bg(n,p) —
Endc (V) corresponding to this representation.

We introduce a function ¢ on the set {(n,k)|n=1,...,n,k € Z>o} by ¢(n, k) :=
17— n(k + 1). Then ¢ defines a one-to-one correspondence between the index set
in question and the set of non-positive integers; it induces an order on the index
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set by (m1,k1) > (12, k2) if and only if ¢(n1, k1) > ¢(n2, k2). In the future, when
we write a wedge product (either finite or infinite), we will always use a decreasing
order on each monomial part.

5.2. Fock space. Let us recall the Fock space F considered in [Ug]. It is defined
as the vector space spanned by semi-infinite wedge products e;, g, A €y, ko A - -+
with the asymptotic condition that ¢(e,, x,) = ¢(ey4, k,,) + 1 for all but a finite
number of ¢ € N. For any non-positive integer M, define F; as the subspace of F
spanned by ey, i, A€, ko A+ with ¢(n1, k1) > ¢(n2, k2) > - - - and the asymptotic
condition that ¢(e,, k,) = M —i+1 for all but a finite number of i € N. We call M
the charge of the wedge product; observe that F = @, Fa- In each space Fuy,
there is a special element |M) called the vacuum vector of charge M defined by

|IM) = €y, N €nykey N+, Where ¢(ey, 1,) =M — i+ 1 for all 4.

From now on, we fix a charge M = s — n(k + 1) for some integers k € Zx>g
and 1 < s < n. Set ¥(d) = s+ nd for d € Z>¢. By definition, we have |M) =
es,kNes—1, 5N\ ANet gNen k41 /N\en—1 k1A - . For any vector v = ey, 1, Aep, g, A- -
in Fpy, define its M-degree to be

deg™(v) =Y (k—kj)+ > > (k+m+1—kermni))-
j=1 m=0 j=1

From the asymptotic condition for the vectors in Fjs, we can see that the M-degree
is well defined and degM(|M)) = 0. Denote by F¢, the subspace spanned by the
homogeneous elements of degree ¥(d) in Fps and by Fps— the subspace of Fpy
formed by vectors e;, k, A €i,x, A--- where all k; > 0. Thus Fp - = 6P, ]—"f\l/_[)_ =
By (Fi ﬂfjdwﬁ).

We denote Va/;fﬁ(h) by V. It has a basis formed by ordered wedges: {e,, x, N
ok N N kornn | <M <y ki € Zso}. Define the M-degree for these vectors
by

s h—1 n
degM(em,kl Neny ks N /\enl:ks+n,h) = Z(k - kj) + Z Z(k+m+ 1- ks+mn+j)'
j=1 m=0 j=1

Let V% (d) be the subspace of V% spanned by wedge products with M-degree
equal to ¥(d). It is a Bg(n,p)-module, i.e., the twisted Yangian action preserves
the M-degree.

Define L?l\’jl : VI(d) — Fur by sending any vector v € V/(d) to the vector
v A|=n(k+h+1)). From the definition, we can see that deg™ (v) = deg™ (v A | —
n(k+h+1))). Thus we have a map (5" : V/o(d) — Fi;_ and the following result
analogous to proposition 3.3 and corollary 3.4 in [Ug].

Lemma 5.5. For 0 < d < h, Lﬁl\}[h is an isomorphism of vector spaces. Moreover,
if d < hy < hg, then the map L']\i/’[hl’hz = (L’]\i/’[hz)_l o L']\i/’[hl VI (d) — VI2(d) s an
isomorphism.

5.3. Twisted Yangian action on a Fock space. For any positive integer m,

define a subspace in C[z; !, ..., zljrln]:
Linm = Spanc{zy ™ 25 ™% - 200 < |m;| < m Vi and §{i : [ms| = m} < n}.
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Let
f= szl ~-~zl_k’(zl+1---zl+n)_m, where 1 < k; <mforalli=1,...,L
The following lemma can be seen from direct calculations.

Lemma 5.6. Let o;; and v; be the usual reflections in W;. For s,t € Z>o and
s < t, we have the following identities:

1
—s_—t\y _ _—s_—t —s—1_—t+1 —t+1_—s—1,
[ J
1 s t s t s
e N(—S—t\ o —s . — —s+1_—t+1 t—1 _s—1,
1— 2z (1 —0ij7v;)(2 Z; ) =2; z; t 2z 25 +ot 2
1 1 —8\ __ _—s —s+2 5—2
—— 1 =7)(% %) =%+ 2 toeetz

1— 2z

K3

From Lemma and the definition of the trigonometric Dunkl operators, we
have

(5.1) D; 140(f) = Diy(f) mod Ly fori=1,...,1;
(5.2)
. K2 .
D;iin(f) = (—m+(2l+n—z)/<;1 — ?)fmodﬁlm,m fori=101+1,....,14+n.

Set C(i,1,n) = —m + (2l + n — i) — %2. (Recall that we assume x; = 1.)
Besides the previous two equivalences, we will also need a corollary of Lemma

E.7 below.
Let

. E®
Ty = 3 TRL@T @ T ), TE W) =6+ 2,

1<k, ...kn_1<n

where the ¢;’s are constant such that cy41 = ¢, — 1. Define also S;;(u) and ng) by

B Jo
n n k a
Si = >SS @ Sp)L ), S ) = dw

1<k, kn_1<n

where the dj’s are also constant such that di+1 = di + 1.

We view the coefficients of Tz(f)(u) and Sz(f)(u) as linear endomorphisms of
(C™)®". The coefficients of T;;(u) and S;;(u) are also endomorphisms of (C™)®™
and they descend to the quotient A"C™. (Note that A"C" can be identified with
D41 (triv), where triv is the trivial representation of the degenerate affine Hecke
algebra.) Set w, = e, ® e,—1 ® -+ ® e1, where {e1,ea,...,e,} is the standard
basis of C". Let L, be the subspace of (C")®" spanned by elements of the form
Viy ® Vi, @ -+ @;, with vy, = wv;; for at least one pair of distinct indices ij, , ij,,
so that A"C™ = (C™)®"/L,,.

Lemma 5.7.

Toi (w) (wn) = (1 +

u+cl) wy, mod Ly,  Tgj(u)(w,) =0mod Ly, 1 <i#j<n,

Sii(u)(wn) = <1 + > wp mod Ly, Sij(u)(wy) =0modL,, 1 <i#j<n.

u+ dy,
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Proof. The proof is by induction on n. Let’s assume first that n = 2. By direct
calculations, we have

1
T W) = (14 1 ) ase,

1

T T W(e 8 e1) = s

€1 ® eg,

— 1 _
S0 Tll(u)( ) (1 + u+C2 (u+01)(u+02)) w2 = (1 + u Cl> wg mod Ly, where

the last equality was obtained using the assumption that co = ¢; — 1.
We have

T (W) T8 (u)(e2 @ e1) = er@er, T (@TH (u)(e2@er) =0,

u—+c
50 Tia(u)(wz) =

1
congruences Taa(u)(wa) = (1 + T) we mod L, and Ta1(w2) = 0 mod L.
u C1

u+cl ——e1 ®e; = 0 modL,. In the same way, we can obtain the

Let’s now consider the induction step. We consider a few subcases.
Suppose that i = j # 1. Then

Tiww) = > TR @TE (w) T (w)(wn)

2<ky,....kn—1<n

S TR T ) TV )T () (wn)

3 n 2,
2<ky,....kn—2<n

1
= (1 + ) wy, by induction.
U+ cy

Suppose that i =j=1and let W, =€, ® e, 1 ® - ez ® ey ® es. Then

1 2
Tu(w,) = > T @T, )T (u)(w),)
1<kq,..., kp_1<n
k1, kn_17#2

1<ky ... ky_g<n
kiyookn 272

1
<1 + ) w!, by induction.
U+ cq

It follows that Ty (u)(wy,) = (1 + u+c1
Suppose now that ¢ # j and j # 1. Then
Ty = Y TR T T (w)(wn)

2<ky, . kn_1<n

2 n—1 n
S TR T @) T8 )T () (wn)

2<k1,cckn_2<n

)

0 by induction.
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Finally, let’s consider the case i # j and j = 1. Then

T, = > T T, ()T (u)(wh)

n—1,

T @ T @) TE D @) T (w) ()

n—2,1 n

Il

= 0 by induction.

It follows that T;1(u)(w,) = 0.
The proof is the same for S instead of T. O

Corollary 5.8. Forw) = e, Aen_1A---Aey, the following equalities hold in A"C™:

Tu<u><w9>=(1+ )wa Tol) =0, 1<izj<n,

u—+c

Suw(e) = (1+ 7)ol Sy =0, 15izj<n

u+dy,

Now take I = 9(h), so | +n = 9(h + 1). Let w € Vi (d) and let = be the

equivalence modulo @,,- , Vi (d'). From the definition of ¢§;""

)

d,h,h+1 h
Lar (W) = w A en nprtny) A Aer iy € Vo (d)-

Let BE;) be the generators of the twisted reflection algebra Bs(n, p) and b;;(u) be

. . . . "E
its generating series. We denote the polynomial generators of H, .

we will need to consider different values of £. In this section, we set

by ¥k, since

gk g
£, (k) . i £,(k) . i _ ke M—2p
TZJ (’LL) 6%] + u— % + gkj’ S’L] (U) 6ZJ + u— % _ ykﬁ’ ﬁ - 2 2 )

2
u—n=+2C(+1,1,n)

oulw) = o= ) = (145 ). G =g e

Thus we have
prom -1 (bij (w) (137" (w))

I4+n,(l+ I4+n,(l+n—1 I4+n,(14+1 l4n,(1
= Y a@(sir s s st )

. S
1150t 4n—1

J15--5Jl4n—1
Hn,(1 Hn,(1 Hn, (1 l+n,(l+1 I+n,(l+ d,h,h+1
o .S'L.hs( )(u).TS,jl( )(u) T lef1(7j)z (U)sz,?l£1 )(u) o .le+7:L517_;L) (u)> (LM (w))

_ l+n,(l+ I4+n,(l+n—1 l+n,(l1+1 I+n,(

= Y a@(sir s s st O )
i17-~,isz+n—1
J1sesdl4n—1

N .Sl+n,(1)(u).Tl+_n,(1)(u). . .Tl+fn,(l) ( )~l+n,(l+1)(u) N .’,fH»n,(lJrn)(u)) (L}i\}[h,h-i-l(w))

1,8 S,J1 Ji—1.J1 JiJi+1 Jitn—1,]
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)
by (£2), where Tl+"( )( ) = O0ap + % It is possible to simplify the

expression on the last line using Corollary we get
7 d,h,h+1
prm,—1 (b (w)) (377" (w))
— I+n,(I+ I+n,(I4+n—-1 I+n,(I+1
=6'w Y asw) (SZ P ARY (T AN €7) B AR ()

s
11,12, 7Zl+n—l
J1:925--:d1—1

) Sl,“l’(l)(u) . S{+n,(1)(u) ) Tl+4:"(1)(u) o Tl(+n,((l)(u)) (L?l\,;,hﬂ(w))

2058 —1 11,8 S,J Ji—1,]
— l4+n,(1+ l+n,(l+n—1 I+n,(l+1
Sgw Y (s s ) s )

s
2152254452 4n—1
J15925--5J1—1

1,(1) 1,(1) 1,(1) (D d,h,h+1
si0 -tV @) T @) (5 (w) by G
=g Y (ST @S ) s W)

Tyifn—1 Utn—15014n—2 141,91
LG4yl —1

(5" (1,1 (B () (w)))
(u

_ I+n,(l+ aln,(I+n—1 I+n,(l+1
=& (u) 3 (Suii Mg (g )>
58415yt dn—1
d,h,h+1
(37" o~ (b (w)) (w)))
(k)

by (2), where §f;g"7(k)(u) = 0 + % Using Corollary [0.8] again, we
see that this last expression is congruent to & (u)&; (u)e j\l/lh oAt (p1,—1(bij(u)(w)).
The previous computations lead to the following proposition:

Proposition 5.9. Assume d < h. For any w € V/4.(d) and 1 <i,j <n,
7 d,hh d,h,h y
ps+(h+1)n,71(bij (u))(LM +1( )) = 519 ( ) i (szrhn,*l(bij (u))(w))

Set Ep(u) = H;:OI €o(i)(u) and define the following renormalized action of the
twisted Yangian on the space V% (d):

1 .
Ph = T(u)pﬁ(h)’*l : Bg(n,p) — EndC(Va}ﬁ(d)).

From Proposition (.9] we can get the following conclusion.

Proposition 5.10. For d < hy < ho, 1y dhisha Phy = Phy © L(f\z[hl ha Moreover,
‘Ii\/[hl’hQ induces an isomorphism between the Bg(n, p)-modules Vifg (d) and VJ&Q (d)

with renormalized actions.

The following theorem is the main conclusion of this section and is a corollary
of the previous proposition.

Theorem 5.11. Set ﬁd(ég;)) oph(b(r)) ( -1 Endc(]:d ) for0<d<
h. Then ﬁd(Bz(-;)) does not depend on h, so we have a well-defined (mdependent of

h) action of Bg(n,p) on each degree d piece of the Fock space Fyr,—, and hence on
all of Far,—.
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6. TWISTED QUANTUM LOOP ALGEBRA OF TYPE AIII

6.1. Twisted loop algebra and Onsager algebra.

Definition 6.1. The twisted loop algebra gl,(C[s,s7])? is defined as {f(s) €
gl (Cls, s [0(f(s)) = f(sH)}-

The twisted quantum loop algebra of type AIIIl to be introduced later is a
quantization of the enveloping algebra of gl,,(C[s,s™1])?. The twisted loop alge-
bra gl,,(C[s,s71])? (or rather sl,(C[s,s71])?) can be viewed as a generalized On-
sager algebra as suggested in example 3.10 in [NSS|. Note that gl,(Cl[s,s™!])? =
sl,,(C[s,s71))? @ CI,, ®c C[s,s™!]'' where T' acts on Cls,s!] by v(p(s,s7!)) =
p(s71,5), so that C[s,s~!]' is a polynomial ring in the variable s + s~ 1.

Affine Kac-Moody algebras (without the derivation) are universal central exten-
sions of loop algebras. It is thus natural to wonder if the twisted loop algebra
sl,,(C[s,s71])? admits a non-trivial central extension. At least when n = 2p, we
can show that the answer is negative; see Proposition below and the paragraph
just above it.

Lemma 6.2. If n = 2p, then gl,(Cl[s,s™1])? is isomorphic to gl,(A), where A =
Ct,t L m)/(? =Lyt =t 1),

Proof. Define a linear map 9 : gl,(A) — gl,(C[s, s~ 1])? by

w(Eij((tk T (_Dat_k)eb)) = Eitaptipjop(s" + (=1)%7"),

where a,b = 0,1 and the indices of E;{4p+bp,j+bp should be taken modulo n.
This is a linear isomorphism and is a homomorphism of Lie algebras since

B([Bs (7 + (1" )en), B (17 + (1)t )ea)] )
= (80 scaBu (7 + (<)) + (<1)"2)eq)
= Gubara B (17 + (=) T)(E7 + (1) )ey) )
= dybreat(Ba((t747 + (<174 mm2)e,))
+ v ety (B (14777 + (<) ey))
— bt (B (747 4 (-1 ey

= GitGara o (B (C) 77+ (—1)°t7 " )ey) )
= jk:5b+c7dEi+(a+c)p+dp,l+dp
(5r1+r2 + (_1)a+c87r17r2 + (—1)CST17T2 + (_1)1157“277“1)
- 5il5d+a,bEk+(a+c)p+bp,j+bp
(6.1 (5757 4+ (<L) 4 (1) (<1)0T ),
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and
[0 (B (7 + (=1 7)es)), 6 (B (172 + (=)t ")ea)) |

- {EiJrap+bp,j+pb(ST1 +(=1)*™"), Exteptp,i+ap(s™ + (—1)6542)}

a+c _—ri—r
g~ T2

= 0,10b,c+dBitraptbpitdp (s™ T2 + (—1)
+(=1)3s7277 4 (—1)es™72)
= 0it0d a+b Er+eprdpjbp (s7 T 4 (1) s
(6.2) +(=1)%s™" 4 (_1)csr1—r2)’
and (6] is the same as ([62) (a, b, ¢, d should be viewed modulo 2). O

It is known from the work of C. Kassel and J.-L. Loday [KaLo| that the center of
the universal central extension of sl,(A) is isomorphic to the first cyclic homology
group HC1(A). That sl,(A) does not admit a non-trivial central extension is thus
a corollary of the next proposition.

Proposition 6.3. HC;(A) = {0}.

Proof. HCy(A) is the kernel of the map (A,A) — [A,A], where (A, A) is the
quotient of the space A ®c A by the subspace spanned by a ® b + b ® a and by
ab®c+bcR®a+ca®bVa,b,ceA.

A spanning set for (A, A) is {t'7? @t,t'y @t~ tiyd @4} fori € Z, j = 0,1; let’s
find a smaller spanning set. '@t =0 Vi € Z\{—1} since HC1(C[t,t"!]) = Ct ' ®t.
Moreover,

tyt =yt =t @t vyt =t @yt +y et
=ty @t+tT T Ry Lyt
so t'y @ t~! can be removed from the spanning set. The elements (t' + ¢~ %)y ®
and (t' +t7%) ® v are in the kernel, but actually they equal 0 in (A, A) since
0= +t7)@1=(t'+t7) 7 = (t' +t )y @y +y(t' +t7) @y = 2(t' +17)y®y
and similarly with (¢! +¢~%)y instead of (¢! +¢~%).
What is more surprising is that t ® t~! = 0.
tRt =ty =t@ Y=ty Rty + 7t Ry =04+7®7=0.

The conclusion of all these computations is that (A, A) is spanned by ty®t, (¢ —
t7) @~ and (t' —t~ ")y ®~ for i € Z. It is even possible to restrict i to i € Z>;
and still obtain a spanning set because

y@t=4t""t=t""@ty+7t! T =ttt +tRt iy -t oy
=t @y —tTy@t—tI T @Y.
It follows that the kernel of (A, A) — [A, A] is trivial. O

Remark 6.4. A can be given a Z/2Z-grading with deg(t) = 0 and deg(y) = 1.
Denote by A9" the resulting super algebra. The Lie superalgebra sl,(A9") was

studied in [ChGul] and it was determined that HCY / *Z(A%") is one dimensional,

where H C’lz/ Zisaz /2Z-graded version of cyclic homology. It follows from [ChGu2]

that s, (A9") possesses a universal central extension with a one dimensional center.
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sl,,(C[s,s71])? is a generalized Onsager algebra in the sense of [NSS], so proposi-
tion 6.2 of loc.cit. can be applied to it. Set Rex = (J,cox Ra, where R, is the set
of isomorphism classes of irreducible finite dimensional representations of sl and
sI% = sl,, if z # £1, whereas slFt = sl0.

Theorem 6.5 ([NSS], Proposition 6.2). Any finite dimensional irreducible repre-
sentation of sl,,(C[s,s~1])? is an evaluation representation (in the terminology of
INSS|; in more standard terminology, it is a tensor product of evaluation representa-
tions; see remark 4.6 in loc. cit.), and irreducible finite dimensional representations
of sl,,(C[s,s™1))? are parametrized by the set of finitely supported T-equivariant
functions ¥ : C* — Rex such that U(z) € R,.

6.2. Quantum loop algebra. Let P be the permutation operator P(v; ® vy) =
v2 ® v1. Let us recall the RTT-presentation of the quantum group il,(gl,). We
will view ¢ as a variable and work over C(g), unless stated otherwise. Set C}} =

C" @¢ C(q).

Definition 6.6. The quantum R-matrix of finite type, which is an element of
End ¢(4)(C}')®?, is given by

R= Zq”E“®E”+ ZE”@@EJz
3,j=1 Li]>j1

Set R=R—(q—q ')P= PR 'P.
Definition 6.7. The quantum group &,(gl,) is the associative C(g)-algebra gen-
erated by t;;,%:;,4,7 = 1,...,n, with relations:

RT2T1 = TlTQR, RTQTl = TngR, RTQTl = TngR,
Here T = Z” 1ti; ® E;; and T = Z” L tij ® Ej; belong to y(gln) ®cq)
End C(q)((Cq)

Remark 6.8. Our R-matrix is the conjugate by P of the quantum R-matrix of finite
type considered in [MRS]. We will stick with the definition used in |[JoMa].

Definition 6.9. The affine quantum R-matrix is the element of End ¢(4)(C})*? ®c
Clu,v] given by (see [MRS])

R(u,v) = uR — vR.

Set Lgl,, = gl,(C[s, s !]). We will need the RTT-presentation of the quantized
enveloping algebra of Lgl,,, so we recall its definition.

Definition 6.10. ,(Lgl,) is the C(g)-algebra generated by tg),tgj) with 1 <
1,J <n,r € Z>o such that

63) 0=tV =0if1<j<i<n, V) =71 =1, 1<i<n,
(6.4) R(u,v)T5(v)T1(uv) = T (u )Tz(v) (u,v),
(6.5) R(u,v)To(v)T1(u) = T1(u)Ta(v) R(u,v),
(6.6) R(u,v)T2(v)T1 (u) = T1(u)To(v) R(u, ),
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where we have set T(u) = Y7, tij(u) ® Eiy, T(u) = 37, tij(u) ® By and
1l = St Fyla) = S

Uy (Lgly,) is a Hopf algebra with coproduct given by

thk & tk] ) thk & tk] )

Later, in order to understand that the twisted quantum loop algebras of type
ATII provide a quantization of the enveloping algebra of a twisted loop algebra, we
will need to know how ,(Lgl,,) specializes to U(Lgl,). We follow the explanations
given in [MRS]. Let A be the localization of C[g,¢~'] at the ideal (¢ — 1). Let

Ua(Lgl,) be the A-subalgebra of $,(Lgl,) generated by the elements TZ(J),FE;)
given by
(r) 7(r)
i by
g—q Y q-q
except that, when » = 0 and ¢ = j, we set
0 -(0)
O _t'=1 o _ _ i =1

T~ = —1° (%3

q—4q qa—q

() _

Tij

T forr>0,1<4,j<mn,

Theorem 6.11 (Section 3 of [MRS]). The assignment E;j;s” TZ-(;), —Ejis™" —
FE;-) Vr>0,1<i,j7<nexceptifr=0andl <j<i<n induces an isomorphism
U(Lgl,) — Ua(Lgl,)®4C, where C is viewed as an A-module via A/(q—1) — C.
6.3. Twisted quantum loop algebra of type AIIIL. The twisted quantum loop
algebra of type AIII is a quantization of the twisted loop algebra gl,,(C[s, s~1])?.

We will need to consider another involution 6’ obtained as #, but from the matrix
©,, given by (see [DiStJoMal),

O, = g0, " = Z Ekk+zEkn k+1+zEn k+1,k>

k=p+1

Q—ZEkk— Z Ekk+ZEn k+1k+ZEkn k-

k=p+1
We need a deformatlon of the matrix @;. As suggested in [NoSulDiStl[JoMal,
for a new variable &, set

where

67 Jo=(E-¢t ZEkk—f ! Z Ekk+ZEkn k+1+ZEn k+1,k-

k=p+1
Two useful properties of J¢ are that it satisfies the Hecke relation (J¢ — &)(J¢ +
¢71) =0 and is a solution of the reflection equation (see [DiStlJoMal). Set
uJ® —u~t(J8)!

u—u1!

(6.8) G (u) =

Lemma 6.12. G¢(u) satisfies the reflection equation with parameters:

(6.9) Ro1 (v, u)GS (w) R(u™", 0) G5 (v) = G5(0) Ryy (u™ ', v)GS (u) R(v, u).
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Proof. Since R(u,v) = uR — vR, ([69]) is equivalent to
(vR21 — uR21)GS (u)(u™ 'R — vR)G5(v) = G5(v)(u™ " Ryy — vR21)GS (u) (vR — uR).

We thus have to check the following relations:
(6.10) RorJy RJ3 = J5 Ry Jis

Roy (J7) T R(J5) ™" =(J5) "' Ra1 (J5) 'R,

Ror(J7) ' R(J5) ™ = (J5) "R () ' R;
Roy (J5) YRI5 =J5Ro1 (J5) 'R, Ry JER(JS)™' = (J5) 'Ry J*R,
Ry (JS)'RJS = J5R (J5) ' R;
(6.13) Ry JSRJS = J5Ry1 JSR, Ry JSR(JS) ™ = (J5) 'Ry JER;
—Roy (J§)'R(J5) ™ + Raa (J7) T RJS

(6.11)

(6.12)

(o1 = —(J5) ' Rar(J}) 'R+ T3 Rar () 'R
6.15) —Ro  JPR(JS) ™! + R21(Jf)’1R(J§):1 )

= —(J5) 'R JY R+ (J5) " Ren (J§) '
(6.16) —Ry JSRJS + Ry JSR(JS) ™" = —JS Ry JER + (J5) "' Roy JSR;
(6.17) —Ro1 (JS) RIS + Ry JS RIS = —J5 Ry (J5) 'R+ J5Ryy JER.

Identity (6I0) holds according to [JoMa]. Using R = PR™'P = R— (q—q})P
and the Hecke relation for J¢, it is possible to get the first equation in each of
611), (612) and (6I3) from (G.I0). The other equations on each of these three
lines follow from the first one on the same line.

Using R = R — (¢ — q~!)P, the Hecke relation for J¢ and (6.10), (6.12)), one can

show that (G.I4]) holds. Similarly one can prove (GI3]) using (611) and (EI2), and
(BI5), (IT) vsing (GI0) and (GI2). 0

Definition 6.13. The twisted quantum loop algebra Uf (Lgly,) is the associative

C(q, &)-algebra generated by elements 51(‘;)7 1 <1i,j < n,r € Z, such that the matrix

S(u) = 327y sij(u) @ Eyj, where si5(u) = 3777 sl(;)u*r, satisfies the reflection
equation

(6.18) Rop (v,u)S1(u)R(u™",v)S9(v) = Sa(v) Ry (u™t,v) S (u) R(v, u).
* ok X

Moreover, we require that sgg) =|x x 0 , where the blocks are of size
Y 0 0

j
(p,n — 2p,p) X (p,n —2p,p), X and Y are upper triangular with respect to their
second diagonal and X, ,_; =Y,_; ;. (See [JoMa], proposition 7.6.)

We will later deduce that 45(Lgl,) has a PBW-type basis. For the moment,
(r)
ij
ifand only if r <porr=pbuti<korr=p,i=kbutj<l.
(r)

1j

we state one half of this fact. Introduce on the generators s;.” a total order < via

(r) (p)
S = Sp
Proposition 6.14. The set of monomials in the generators s;.’ ordered with respect

to = is a spanning set for L({;(Eg[n).
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Proof. Set ¢ = q— q~'. We need to start by writing the defining relation (6.I8)) in
terms of the generating series s;;(u):

(ufqu&:k _ ,Uflq(;ik) q 5J7c ( Skl C(Sjk Z S'Le sel
e<j

—vg %) | %% sy (u)sp(v +5gkCZ$ze u)Ser (v

e>j

- C(U715i>k + U715i<k) qiéij Skj( Szl Cfsz] Z Ske Sel

e<j

+ C(ubick +v0isk) | @7 sk (w)sa(v) + COig Y ske(u)se(v
e>j

= (u"lg7% — v 1g) (q_é“skz( s4j(u) — leZSke v)sej(u )

i>e

+ (uqéﬂ - quéjl) (q&il Skl( SZj + 5zl< Z Ske Sej )

1<e

—C(u 0y + v 0s) <q—5u5kj( sy (u) — ngzske v)Ser(u )

i>e

+ C(udr>j + véicj) (q&ijskj( sit(u) + 0i5C Y ske(v)ser(u ) :

i<e

Set fap(u,v) = (uq‘;ab - Uqf‘;“b), Jab (U, V) = udpsq + V<o and

Hicd(uvv) = qiébcsab( )50d ) £ 0bcC Z Sae Sed

ie>ib

The defining relation (G.I8]) can be rewritten as

(6.19) fik(u,v)Hi‘;kl(u,v) - fik(v_l,u_l)Hi;kl(u,v)
+ Cgin(u, 0)HiEy (u,0) = Cgin (0™ u™ ) Hiyy (u, 0)
= fi(u,0)H o (0,u) — fu(o™ u™ ) Hyg (v, )
+ Cg5i(u, U)Hlj;il(v7 u) — ngl(v_la u_l)Hk:_jil(U7 u)

for 1 <i,j5,k, 1 <n.
All these relations give us straightening rules to express any monomial in the

(r)

generators s;;” into a sum of monomials ordered with respect to <. Considering
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the coefficient of wv™" in (619, we deduce that, for any r > 0,

(6.20)
q(Sik ]k (;))355) + (5 CZS(O) (r) +Coicr | g 3ij SECO)S(T) C(S ng)e) Sl”)
e>j e>j
= %! (qéi +511C25ke 9) + Cor>; ( ”31(:)51 + 0 Czske gz))) :
i<e i<e

Suppose that s( ) < s,(cl) and 7 > 1. We see that 521)5(0) can be written as the sum

of a scalar multiple of s( )s,(d) and scalar multiples of monomials of the form s(%) (r)

and of the form sgb) z(:d) with ¢ > 4, so that s(o) =< s, ). (Note that such terms do

not occur if ¢ = n.) By repeatedly applying thls relatlon, we can eventually write

52)5,(5) as the sum of a scalar multiple of sgj)s;l) and scalar multiples of properly

ordered monomials of the form s(%)s(:l)

(0 )

Assume now that r = 0 and s,;” < s\ so that k < 4. (Because of our choice

Z_] )
for the relation ([6:20), it is preferable to consider 8( ) < s( ) instead of s ) < sg;).)

If i = k and | < j, relation ([6:20) shows that s(j)s,(col) can be written as the sum of

a scalar multiple of s;l)s( ) and scalar multiples of monomials of the form s b)s(?l)

with @ = k and ¢ > i. If k < 4, relation (G.20) shows that sg))sg) can be written as

the sum of a scalar multiple of s,(g)sg)), of s,(;;)s(? and scalar multiples of monomials

of the form sg;))sgl) with either k = a < c or i = a,c¢ > k. In this last case (which

does not occur if k = n), it is possible to reuse relation (6.20) finitely many times

to be able to express sgj)s,(d) as a sum of properly ordered monomials.

The rest of the proof proceeds by induction. We have to show that s(rl) (;2) with
r1 > 19 can always be written as a sum of properly ordered monomlals Induction
is on 79, the case ro = 0 having been dealt with already. Suppose that r; > ro;
considering the coefficient of v="14~"2! in ([EI9) and removing the monomials of
the form s(b )s(gm) with min{my, ma} < ro (since the inductive assumption can

be applied to them) yields the following relation:

" | @ sn)  0C Y s s

e>j

+ C(Si<k q w SI(€T2 zl _|_ <6 ZS(T2) (r1)

e>j
- (e i )
i<e

+C6l>j< ”SI(CZI 5;2 +5UCZST1) T2)>.

i<e
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We see from this that if [ < j, then s,(;;l)s(,r?) can be expressed as a sum of a scalar

ij
multiple of 3(r2 s,(;) and as a sum of scalar multiples of monomials of the form

(m1)  (m2)

Sop  Seq . With my = ry < 71 = mg, or min{mi,me} < rp or with m; = r; >
mg = r9,c > i. The monomials of the latter type can be shown, by induction on
¢, to be sums of properly ordered monomials. (Note that this latter case does not
occur if i = n, so induction is on decreasing values of ¢ from n to 1.) If I > j, then
s,(:ll)sl(-;Z) can also be expressed as a sum of similar monomials to which a scalar

multiple of s(”)sl(.l”) must be added. This last monomial is not properly ordered,

but since j < [, it falls into the previous case just considered. Therefore, when

1> To, sgzl) E;z) can be expressed as a sum of ordered monomials.
(r1)

Suppose now that 71 = ro and s;;"" < sz(;?) (so either k < i or k = i,1 < j).

For this last case, we switch the roles of ,j,7, and k,l,7;. We want to see that

SEJ )s,(cl 1) can be expressed as a sum of properly ordered monomials. Considering

the coefficient of u~"2v~"1*1 in (BI9) and removing the monomials of the form

sflznl)sigm) with min{ms, ma} < r2 (since the inductive assumption can be applied

to them) yields the following relation:

= (s ae Y sl

e>j

+ Coisk | g ”SI(chz s\ —|—<5 ZS(Tz) (r1)

e>j
i<e
+<al<j( g 0 T )
i<e
We see from this that if £ <4, then 8(;2)8551) can be expressed as a sum of a scalar
multiple of s(rl)s§;2 and as a sum of scalar multiples of monomials of the form
sgg”)sg?) with min{m, ms} < ro or with m; = ry = ro = mo and s(b D SS;M),

or with ¢ > k. The monomials with ¢ > k can be shown, by induction on ¢, to be
sums of properly ordered monomials. (Note that this case does not occur if k = n,
so induction is on decreasing values of ¢ from n to 1.) A similar argument works
when i = k,[ < j.

Having proved that the product of any two generators of Ub(Lgl,) can be ex-
pressed as a sum of properly ordered monomials in two generators, it follows im-
mediately that the same is true of the product of any number of generators. (Il

6.4. Embedding in the quantum loop algebra. In [MRS], ¢-twisted Yangians
were realized as subalgebras of the quantum loop algebra ,(Lgl,). This is also
possible for 4 (Lgl,).

Theorem 6.15. The embedding ¢ : S(u) — T(u)Gg(u)T_l(u_l) realizes U (Lgly,)
as a subalgebra of U, (Lgl,) ®c(q) C(q,§)-
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Proof. We have to check that ¢ gives a well-defined homomorphism 8 (Lgl,) —
U (Lgly) @c(q) Clg, &), that is, it respects the relation (6I8]). (As for the vanish-
Eg), see proposition 7.6 in [JoMa].) The proof eventually relies
on the fact that G¢(u) satisfies the reflection equation. We have to substitute

T(u)Gf(u)T_l(u_l) into (6I8) and check that it is satisfied.

ing condltlon on s

Roa (v, )Ty (W) G ()T, (™) R(u™ )()Gg(v)TQ

= Ro1 (v, u) T (u) G5 (u)Ta(0) R(u™ )Ty (u™)GS5(0)T5 (v™1) by 6F)

= Ro1 (v, )T () T2 (v) G5 (w) R(u™", 0) G3(0) Ty (u™)T (v

= T(0) T3 (u) Rax (v, ) G5 () R(u™1, 0) GS(0) Ty (u™)T, ' (v™1) by @)
(u)GS (v) Ry (u 1,v>G§<u>R<v WTy (W T, (v by @)

—’UQTQ(’U)Gg(U)Tl(U,)Rgl(U l,u)G ( )T2 v T, (YR, vt by (65)
= 0Ty (v)GS(0) Ty (u) Ror (v, )T (0G5 ()T (u ) Ru™ v7)
= u T (V)G (0)Ty (0™ Y) Ry (v 1, W) T () GE ()T (w ) R(u=", v )

(
by @8) (using R(u,v) = woR(v™ u™t))
= To(0)GS(0)T, (v ) Raa (u™ !, 0) Ty () G ()T (w1 R(v, w).

This proves that ¢ is a homomorphism of algebras. We have to see why it is
injective. We can argue as in [MRS] by passing to the limit ¢ — 1. (See [JoMa]
for the finite case.) Recall that A is the localization of C[g,¢~!] at the prime ideal
(¢—1).

We can view P (Lgl,) as an algebra over C(q) if we set { = q* for some ¢ € 7Z.

Setog) = qiggil ifr>0o0ri#jn—j+lorifr=01<4i=j5<p;set
0;0,2_”1: %ﬁl <i<porn-—-p+1 <z<nanda(
p+1<i<n—p. (See the proof of claim 10.5 in [JoMal.)

Let % (Lgl,) be the A-subalgebra of U (Lgl,) generated by the elements ai(;).
Let ¢4 be defined as ¢, but from 4 (Lgl,,) to LUa(Lgl,). Since Uq(Lgl,)/ (g —
DUA(Lgly,) =2 U(Lgl,), Image(ta)/(¢—1)Image(t.4) can be mapped to a subalgebra
of the enveloping algebra of Lgl,: we want to see that this subalgebra is the en-
veloping algebra of gl,,(C[s, s71])?. Let L : &%, (Lgl,) — $I(Lgl,,) be the map which
is the composite of 14 with L : &4 (Lgl,) — Ua(Lgly)/(g—1)Ua(Lal,) = U(Lgl,).

It is instructive to compute the limit of ¢ 4(o; (r )) when ¢ — 1, that is, to identify

L(ag)) as an element of L(Lgl,). When r = 0, this was done in section 10.4 in
[JoMa]. We could remove the assumption that ¢ = ¢ if we followed the approach in
[JoMa)] and worked over C[[A]], in which case ¢ and & should be of the form e”, e

for some constant ¢ € C. Set T( ) = T(u)~! and denote its matrix entries by

0) _ & '+s i
i
q—q
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o2 OAE;”) =7 Denote by jim and jim the entries of J¢ and (J&)~1. When r > 0,

n [r/2) r—2d L(r—2)/2] r—2d—2

r . r—2d—s r—2d—2—s
o= D0 | 3 Dt = 3 D e
k,m=1 d=0 s=0
so, for r > 1, L(o; (r )) equals

d d 0
[r/2] (t(k)ka%(W:J 2d) t(r 2 )J m“(m;>
Z + J—
=0 q—q q—q

B n
Ll 2
k.m

=1

m]

L(r—2)/2] (0)~ ~(r 2d—2) (r—2d—2)7  70)
<tik tik kmtmj>

— g1
= q—q" q—q

o ~ 10, 70 t(”]km”“”
Therefore, it is enough to compute L (37, ( == + === when

r > 1 in order to determine L(Ui;)). Moreover, since r > 1, jgm, and ;km can be
replaced by the entry ©), of ©7. (Note that ©) = (©7)7'.) It is necessary to
consider several separate cases as in the proof of claim 10.5 in [JoMal. Set

” (0) (r) 7(0)
I — ’I: ZL ( ik 9/~cm mj + tik ;emtmj>

— _ g1
W\ a-a q—q

In the computations below, we also give gLg ™' since this is useful in understanding

how the image of L is isomorphic to Ugl, (C[s,s™1])?. Note that

p
971:%2 kk — ZEkk__ Z Epp + - ZEn 1kt o ZEkn k1

k=1 k=p+1 k=n—p+1
Case 1. 1 <i,5 <p.

(0) ) A(O)
D=L t,; @Ln_i_i,_ltnrfi‘l*ld' N zn j+1@;z ]+17J ij
q—q* -9

—-T T
n—it18 + En_ji148",

- 1 r -r r —r
gLig" = iEji(S +s57") — iEn—j+17n—i+1(S +s57")
1 —r
— 5 Bn—jr1i(s" —s7) +
Case 2. 1<i<p,p+1<j<n-—p,

(0) T) 7
L2 —L (tii @;,n—i+1tnfi+1,j + @_/]j j]

S Bin-ir1(s" —s7").

=FEin_it18 " — Ejs",
q—q? q—q ) e ’

1

_Ejﬂt—i-i-l (ST + Sir).

1
—E]‘Z‘(ST - 877’) + 9

gLyg™' = 5
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Case 3. 1 <i<p,n—p+1<j<n.

0 0
LB_L(tz('i)@'li,n—i—&-ltnT)iJrLj + zn j+1@/n j-‘rl,],\:(]‘]))

qg—q! q—q

—-T T
n—it18 + En_ji1:8",

_ 1 - r 1 ” .
glsg™' = §Eji(8 —s")+ §Enfj+1,n7i+1(8 —s")
1 el 1 T -7
+ §Enfj+1,i(«9r +s7") + 5Ej,nfz'+1(8 +s57").
Case 4. p+1<i<n-—p 1<j<p.

Og En 40 g O
it 7,1] + i,n—j+1-n j;rlyj JJj _ _Ejis—r_|_Enij+1’i8r7
q—4q q—4q

gL4971 = —Ejl-(sr - Sir) -+ En,j+17i(s7ﬂ + Sir).

L=

Case 5. p+1<4,j<n—p.

0) g7 7 (Mg 30
L5:L<t @;741] +t GSJ JJ)

=—FE;s " —Ejs",
q—q q—q 7 7t

gLsg™ ! = —Ej;(s"+s57").

Case 6. p+1<i<n—p,n—p+1<j<n.

(0) o F(r) (r) / 7(0)
/05t t; g st
Lo = L ( . ;z zj i,n— j+ql nqj:-IJ Jj > jisir En—j+1,i8T7

gL6g_1 = _Ejz‘(sr + S_T) — En,jJrLi(sT — S_T).

Case 7. n—p+1<i<n, 1 <j5<p.

(0) ) (r) 2(0)
L.=L <tz’i eg,n—i+1tnr—i+1,j I tz’jnn—j—&-l {n—j—l-l,jtjj )
q9—q

q—q!
Gm—it15 |+ En_jy148",
1

— 1 T - T -7

gLzg' = —iEji(S -s") = §En—j+1,n—i+1(s -s")
1 —r

+ §En—j+1,i(5r + s ) +

Case 8. n—p+1<i<n,p+1<j<n-—p.

(0) r) 7
Le=L (tn‘ @;’,n—i+1tnfi+1,j I @33 ”

1 -
g Bin-ir1(s" +s77).

=FEin_it18 " — Ejs",
q—qt q—q > e ’

~Ejeiii(sT—s77).

- 1 s -
gLsg 1:_§Eji(5 +s )+2
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Case 9. n—p+1<i,j<n.

(0) 7(r) (r) 7(0)
Ly—L (tn‘ On—ititn-itry | tin—jr1Onjristy; )

q—q! q—q?
=FEjn_iv15 "+ En_jy148,

1 1
gLog™' = _§Eji(sr +s77)+ §Enfj+1,nfi+1(=9r +577)
1 _ 1 .
+ 5 Ejn—it1(s" = 877) = S Bnjri(s” —s77).

It follows from all this that the quasi-classical limit of the image of ¢4 is the
enveloping algebra of gl,,(C[s,s™!])?", which is isomorphic to gl,(C[s,s™!])? via
conjugation by the matrix ¢g. For instance, if we denote by L the limit computed
incase k (1 <k <9),and if 1 < 4,5 < p, then we can write (after relabeling the
indices in the case of gL3g~* and gL7g™1)

[N

i 1 1
A S S Bj(s7 +577)
glag” | _[ 2 2 2 =2 Epjiri(s"—s7")
gLzg”! % _% —% % Ej,iyi1(s"—s77)
1 . )
9L99 _% _% % % E’I’L*j+1,n7i+1(8 + s )

Since the matrix is invertible, we see that we can express E;;(s"+s™ "), Ep_jy1,:(s"—
$T), Ejn—it1(s" —s7") and Ey_j41n—it1(s" +s77) in terms of gL1g™ ", gLsg?,
gL7g~" and gLog~".

Under the specialization g — 1, the spanning monomials provided by Proposition
614 are mapped by L to a PBW basis of the enveloping algebra of gl,,(C[s, s1])?".
Therefore, they must be linearly independent. It follows that ¢ is injective and we
can conclude that it is an isomorphism. (See [MRS] for the analogous result for
orthogonal and symplectic twisted g-Yangians.) In more detail, if 3, car, M; = 0
is a relation of linear dependence where M; is one of the monomials in Proposition
614 and cpy, € C(q,€), then we can clear denominators and assume that ¢y, €
C(q)[¢,€71Y). We can find ¢ € Z such that some ¢y, does not belong to the ideal
of C(q)[¢,£7Y generated by & — ¢°. Passing to the quotient C(q)[¢,¢71]/(¢ — ¢%)
and replacing sg) by ag), we can obtain a relation for monomials in 4", (Lgl,,)
with coefficients in A and we can assume that not all the coefficients belong to the
ideal (¢ —1). Applying ¢4 and passing to 4 (Lgl,)/(¢ — 1)U (Lgl,), we obtain a
contradiction because of the linear independence of the images of the monomials M;
in $44(Lgl,)/(q — 1)44(Lgly,). Therefore, all the coefficients cps, must vanish. O

Let us collect the last part of the previous proof inside a corollary.

Corollary 6.16. The A-subalgebra of Ua(Lgl,) generated by the coefficients of
the entries of T(u)Gg(u)T_l(ufl) specializes to 4(gn(C[s,s71)?) as ¢ — 1 when
E=q¢' L.

Corollary 6.17. The ordered monomials from Proposition [6.14] constitute a vector
space basis of UP(Lgl,) over C(g,§).
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Corollary 6.18. UP(Lgly,) is a coideal subalgebra of U,(Lgly,) ®c(q) Clg,§) with
coproduct given by

8” Z tlj ) ®skl(u)

7. DRINFELD FUNCTOR FOR TWISTED QUANTUM LOOP ALGEBRAS
OF TYPE AIII

7.1. From affine Hecke algebra modules to representations of quantum
loop algebras: The gl, case. In this section, we present the construction of a
functor between categories of modules over the affine Hecke algebra of type A and
over U, (Lgl,). This is essentially the functor studied in [ChPr2], although we are
using a different set of generators for U, (Lgl,). Similar constructions can be found
in [Chl] and the current section should not be considered original work, but we
have decided to keep it since it makes the relevant construction in type A more
understandable for our purposes.

Let V = C™ ®@¢ C(q,&) be the vector representation of £l,(gl,) used in [JoMal,
section 7.2 and extended to C(q, ). Consider the tensor product V&', There is an
Hfl,l—module structure on it given by

(7.1) oi = ¢ 'R} Piiv1 € Endoge(VE),i=1,...,1-1,

where P; ; = Z" Eé;)Et(g) is the permutation operator and

s,t=1
Z q @tE( E(J) Z E(Z E(j).
sst;étl sst>t1
Moreover, if we define an action of o; on V®! by
oV RV @ Qu) =V U ® - ® (I ),

where J¢ is the n by n matrix defined in (6.7]), we obtained an Hfl_l
structure on V!, For more details, see [JoMa].

5_1—module

Remark 7.1. In the future, we will use the braid group module structure where the
braid group action is obtained from the natural quotient map of the group algebra
of the braid group onto the finite Hecke algebra.

From lemma 2.1 in [FrMu], we deduce that, for any commutative C(¢)-algebra A
and any invertible element a € A, the following formula defines a homomorphism
evy : Ug(Lgln) = A ®c(q) Uq(gln), given by

(ltij - ’U,_lt_ij a_lt_ij - utij

(7.2) eva(tij(u)) = » - eva(ti(u) =

Let p: Uy (gl,) — End gy (V) be the vector representation, and py =id® --- ®
id®p@id®---®id : Uy(gl,) = End ¢(g)(V®') = End (o) (V)®" with p as the k-th
tensor factor. Then for k =1,... 1, define I;t € End ¢(o) (V®) ®c End ¢(C™) by

a—u1 al—u

n n

I =" (e @) ((t)k @ Biy), Iy = Y (o @ p)((Fig)x @ Byy).

i,j=1 1,5=1
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We index the last tensor factor in End ¢(q)(V)®! @c End¢(C™) by I + 1, so that
I} = (pk ® p)(Ri41) and Iy = (p ® p)(Pris1Ry [ Pris1) (where the last p
denotes the natural representation of gl,,).

For any left Hfl,l-module M, consider the tensor product M ®c¢(q) V@ Tt has a
Bf—module structure through the diagonal action, where the Bf—module structures
on M and V®! are given by the natural projection C[B{'] —» Hf},l. Define the
quotient space D4 (M) as

-1
(7.3) Da(M) =M @¢(q) VE'/ Y Im(o; +q72).

i=1
Now we introduce the following elements in Hé_l[[ufl]] ®c(g) End () (V®') ®c
End(c(l(C ) and in Hfl,l [[u]] @c(q) End ¢(q) (V®!) ®c End ¢ (C™) respectively, for k =
1,...,0

—ky—1 -1
iy - 4 Y + u —
(74) Tk (u)—m(g)lk - q*kYk_l—ufl ®Ik’
_ (¢"Yi — u)q"Yy -
T, (u) = ®1
(7.5) s (@"Y3)? = (¢ + ¢ 2)ughYy, +u? ~F

- (V)2 — (¢ + ¢ 2)gFuYy, + u?
Theorem 7.2. The maps

(7.6)  T(u) = T{ (W)T5 (w)-- T (u),  T(u) = Ty (u)Ty (u) - T; (u),
define a t,(Lgl,)-module structure on Da(M). Thus we have a functor D4 from
the category of left Hé_l—modules to the category of left 11,(Lgly,)-modules.

The proof of this theorem requires the next lemma.

Lemma 7.3. Let V' be the vector representation of Ug(gl,) and let ’Hé,l act on
V@ by [TI). Then we have the following identities for k = 1,...,1 — 1, the first
two sets holding in End ¢(q)(V®') ®c End ¢(C") and the last one in Hé,l:

(1) Il;tll:ct-i-lo-k = Uk[/fllétﬂ;
(2) I,j K410k = UkII;IIL-l’ Il;II;L+1Uk = JkI,jI,;+1+(l—q*2)(I,j 1;+1_I/;IISL+1);
(3) Yok = (qok +q— ¢ ) Y1, Yiy10k = (72 = 1)Yjs1 + ¢ Lop Yy,
VEYE on = o YEYEL Yok = (qok +q— ¢ )Y,
Yk_lak = (q_2 - 1)Yk_1 + q_lakijrll.

Proof. From the definition,

ITIT = Ry R R 1., P — Ry L PuxiiRri1R

Q[k k+1;0k]— Bl 10+ 1,041 40, o1 Pk k41 k k414 R k+ 14 111041141

—1 -1
= (Ria+1Bi1,001 By oy — By Bk 1,001 B 141) Pre o1,

which is 0 since R is a solution of the Yang-Baxter equation. Similarly,

(I I 01 =R Y R Rk P — R+ PuraRY R

Qg L1 0kl = g 1401 1 o g1 4k k41 kk+14 k. b+ 41 Y41 k1

N -1 -1 -1 -1 -1 -1 _
= Pk,k+1(Rz+1,k+1Rl+1,kRk+1,k - Rk+1,le+1,le+1,k+1) =0.
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So (1) holds, and the proof that I, I, ox = ol Lty Iy Lot = o) " LT
is analogous. Using 0;1 = ¢%01 + ¢* — 1, we can prove (2). (3) can be obtained
directly from the defining relations in the Hecke algebra Hf; 1 |

Proof of Theorem [[2. From the commutativity of Y;* and the evaluation homo-
morphism ([T2)), it is enough to show that the map (Z6) factors through the quo-
tient (Z3). From lemma 27 the coefficients of u=! and of u, respectively, in

kv \2_ (2, —2\, K 2 .
T (¢ "y,  —ut) and in []L_, (425 ((?;k;Z—u))uq Yetu are in the center of

Hfz,l. So we need to show that T (u)Ty (u) - - - T; (u) and T, (u)T (u)- - 'f‘l_ (u)

factor through the quotient D4 (M), where Tf(u) =(*"V)F' e IF —uF' o IF.
Using Lemma [T3] we have

T} (u)T) (u) 0 ok — op o T)f (u) T, (u)

-1 —k—1y—1 — 7+ -1 _—ky—1 +7—
=—u q Yok @I I o —u g Y, op @I 0%

+utg oY @ on I +uT g e Y @ o
= w7l (1= g )P+ D ((on+ 1= YT ® (T — 1))
and
T}, ()T, (u) 0 oy — oy, 0 T, (u) Ty, (u)
= —ug"* Y1104 ® I,jIk_HUk —ug"Yior @ I,:I,Llok

+ uq’”lakYk_H ® okI,jIk__,’_l + uqkakYk ® O'ka_I;__i_l
= —ug" (1= g ) (o + a7 ((Pox + ¢ = WYerr @ (G Ty — I 1)

So the image of u_l(’f‘f(u)i‘,i_l(u) o0 — Ok © i‘f(u)’f‘i_l(u)) (as an element in
End ¢(g) (M ®¢(q) V&) belongs to the image of o), 4+ ¢~2, which implies that the
action defined by (7.8 induces an action on the quotient (3.

Finally, any homomorphism f : M; — M5 between two Hf; _i-modules induces

a homomorphism f ®id : Da(M;) — Da(My). O

7.2. From affine Hecke algebra modules to representations of twisted
quantum loop algebras: The type BC case. Let M be a left Hfl,l g,l—module

and let V' be the vector representation of {4 (gl,). Then we know that M ®¢4) V'
is a BP-module. Define

-1
Dp(M) = M ®¢(q) VE'/ (Z Im(0; 4+ ¢~ %) + Im(o; + 5_2)> :
=1

Let T (u) be the elements defined in (7)), (Z3). Let Gé(u) = Id ® Id ® G¢(u) €
Hé,175,1 ®c(q) End C(q)(V®l) ®c(q) End @(q)V[[u’l]], where G¢(u) is the matrix de-
fined in (G.8). Define

S*(u) = TY () T3 (u) - T (w)G* () (T (1) (T (u™)) 7 (Ty (w™) 7
Theorem 7.4. For any Hé_l,g_l—module M, the map S(u) — S*(u) defines a

UP(Lgly)-module structure on Dp(M). Thus we get a functor Dy from the category
of Hfrl ¢—1-modules to the category of U0 (Lgly,)-modules.
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In order to prove the theorem, we need the following lemmas.

Lemma 7.5. In End ¢(q)(M ®c(q) VE)[[u™]], we have

kY u~?!
T —1\\—1 — q k R _ R 1
( k (u )) quk —u-1 & 41,k quk — ufl k,0+1°
Proof. This lemma can be proved by direct calculations. ([l

Lemma 7.6. Denote by J,f the operator in End (c(q)(V@l) ®c End ¢(C™) defined by
applying J¢ to the k-th tensor factor in V® We have the following identities:

(1) JfRz,ZHJlHRHU = Rl,l+1Jl+1Rl+1,lJl£§

(2) (JH) T RGN (JF ) T R fRl,l+1(Jf+1)7lszl+1(J§)71

(3) Rﬁrl 1J1+1Rz+17l(Jf)_1 = (Jf)_le,ZHJlﬂRl 1+ (E—E71)D where

¢ = Rl7l+1Jl+1Rz 11+1 Rf+11 sz+1Rl+1,l;
(4) Rl_+1 z(Jz+1) 1Rl+1,l(Jz£)_1 = (Jf)_lRl,l+1(Jl+1) Rl_l+1 +(E—-hH
where U = Ry (Jiy ) 'Ry — Ry () ™ R

(5) in Hfz—l,f—l’ we have Yiop = (1 — £ 2)q 2y, + ¢ 2oy, and Y oy =
€2~ )Y+ Ployi.

Proof. From [JoMa], lemma 7.4, we know that (1) holds. (2) can be obtained from
(1).

Using J& — (J¢)7t = ¢ —¢71 and (1), we can get (3). Similarly, we have (4). (5)
can be checked directly from the definition. O

Proof of Theorem [[ 4. From Theorem and Theorem [(2 we deduce that it is
enough to show that the map S(u) — S(u) factors through the quotient by the
image of o; + € 2. From Lemma [[.5] we have

—1y -1 -1
¢ . Y _ u
St (u) = (—q_1Y11 p— @ Ri141 q_IYfl g T ® RZJrl 1)
iy -1 —1
'Y, u
N 3R -1 7 ®R,
<q—lYf1 —ut T gy T s l)

1 -1
¢ q'Y u -1
G (e Riont e © R)
qvy u!
(T oo = gt otk

From the definition of o; and the fact that all the coefficients of powers of v~ in
the expansion of Hézl(qui —u (¢, —u~Y) lie in the center of the Hecke
algebra Hfrl,E*l by lemma [Z7] it is enough to show that the coefficients of the
powers of u ! in

(Y ' @R —u @ R, z)Gg(u)(qlYl @ Rij1y—u~ ' @Ry, z+1)
—oi(¢ Y P @ Ry —u @ R )G ) (@Y @ Ry —uT @ R )
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belong to the right ideal generated by o; + ¢~2 in End c(q) (M ®¢(q) V&), This is
equivalent to the following congruences modulo this ideal:

(i) o ® Rz,z+1jf+1Rl+1,l(Jf)_1 =0 ® (Jf)_lRl,zHJfHRlH,l;
i) @ R¢1,1J15+1lell4-1(Jz§)_1 -0 ® Rl,l+1(J15+1)_1Rl+1,l(=]z§)_1
=01 @ (J) R i Rl — o1 ®@ () T R (Jr ) T R s
(i) o ® lerll,l(‘]lil)_lRlTllJrl(Jlg)_l =0 ® (sz)_llerlu(sz+1)_1Rlel«'r13
(iii) ¢'Yio; ® szrll,l‘]l.é+1Rl+1,l(JlE)71 +q 'Y o ® Rl,l+1JlE+1Rz_711+1(JlE)71
=daYi® (J7) 'R T R + ¢ 'Y T @ (7)) T R i R
(iv)

q'Yio, ® Rf+11,z(Jzil)ilRl“vl(JlE)il
+ q_lYl*lal ® Rl,l+1(J[g+1)_1RlTl1+1(Jl£)_1
=doY® (ng)_lRliLl(J15+1)_1Rl+111
+ q_lalYfl ® (Jf)_le,lH(Jlil)_lRf,iLr

(i), (’) and (ii) can be easily obtained from Lemma [(.6] For (iii), we have

q'Yio, ® Rl_Jrll,lJlilRlJrlJ(Jlg)_l +¢ Y o ® Rl,l+1Jl£+1Rl_,ll+1(Jz£)_1

—qaYi® (Jlg)ilRl_Jrll,lJlilRlJrl»l —q 'Y ® (ng)ilRlJJrlJlEHRl_,llﬂ
(by lemma [78 (3))

= ("o — ¢ oY) @ (J7) ' Rua Ji g Rl + (6= €Yo @ @

+ (Y o —dav)® (Jlg)flRerll,lJlilRlJrlJ

(by lemma [7.8] (5))

—q (1= () e+ (- Yo d

=@+ E)E-EN (@Y )+ (E - 1) 9 )).

Similarly, for (iv), we have

¢Yio1 ® R (Jf) " Ria () T 4+ 7Y i ® R (Jf) TR () 7!
—q'oYi® (JF) 'R () T Ripaa — q oY @ (JF) T R () TR
(by lemma [7.6] (4))
= (¢Yior—q "'oY ) @ () T R (Jr ) TR 4 (E— Yo @
+ ('Y o= dloY) @ (JF) TR (Jf) T Riga (by lemma 78 (5))
= (=Y @ () (E - imev
=(@+&E- D@ e+ (€ - YT ).
Therefore, (iii) and (iv) hold. Finally, any homomorphism f : M; — M,

between two Hfrl qgl-modules induces a homomorphism f ® id : Dg(M;) —
Dp(Ms). O
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8. CENTER OF THE TWISTED QUANTUM LOOP ALGEBRA U (Lgl,,)

The method that we use to determine the center of (f(Lgl,) is similar to the
one used in [MRS] via the Sklyanin determinant.

For any choice of indices 4,7,k with 1 < i < j < k < n, the affine quantum
R-matrix R(u,v) satisfies the Yang-Baxter equation

R;j(u,v)Rik(u, w)Rjr(v, w) = Rjr(v, w) R (u, w)R;j(u,v).
From the definition of 4 (Lgl, ), we have
Rji(uj,ui)Si(ui) Rij (uy ' uz) S (ug) = Sj(ug) Ryi(ui ™, u) Si(ui) Rij (g, ui).
Using these identities, we derive the following relation for S(u):

Rn,nfl(una Up—1) - - Ra1(u2,u1)
S1 (ul)(R12(u1_1, uz) - 'Rln(uflv Un))S2(u2) e 'Rn—l,n(ugilv Un)Sn (un)
= SH(UTL)RTL,H—l(ur_Lilv un) s (Rnl (u1_1; un) e 'R21(u1_17 UQ))Sl (ul)

Rnfl,n(un; unfl) ce R12(U2, U1)~

We set
R(tp, ... u1) = Ry pn—1(Un, Un_1) (Rn,n,g(un, Un—2)Rp—1,n—2(tUn_1, un,g))
. (Rnl(un, up) - - Roq(ug, u1)>
and
S(Un, - yu1) = Rp—1 0 (Un, Un—1) (Rn,g,n(un, Un—2)Rp—2n—1(Un_1, un,g))
e (Rln(un, uy) - ng(u2,u1)>.

As in [MRS], consider the g-permutation operator P? € End ¢(C"®¢C") defined
by

n
Pq:ZEii®Eii+q Z Eij @ Eji+q " Z Eij ® Eji-

i=1 n>i>j>1 1<i<j<n

An action of the symmetric group &,, on the space (C™)™ can be defined by setting
S; > Pgiﬂ fori =1,...,n—1, where s; denotes the transposition (i,i+1). If o =
Siy - -+ 8;, is a reduced decomposition of an element o € &,,, we set P = PS‘II_1 . -Pgil

where PJ = P»‘fi +1- We denote by A the g-antisymmetrizer

K3
Al = Z sgn(o) - Pd.
UEGn

Proposition 8.1. The relations

R(qz"‘z,---quvl)—< 1T (q2j—q2i)>~A%

0<i<j<n—1
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and

S(q2n—27 o 7q27 1) _ ( H (q2j _ q2i)> .A%ﬂ

0<i<j<n—1

hold in End ¢(C™)®™.
Proof. This can be deduced from Proposition 4.1 in [MRS]. O

21—2 and

For 1 <i,5 <n, we set u; = uq
Rij = Rij(ui,ug), Rl = Rij(u; ' uy), Sy = Rijlug, uy),
SL= Rij(u; ' wi),  Si = Siluy).
Now the above proposition implies

(8.1) A%LS\(Rl, - RY,)Sa(Rig-- RS,)Ss--Sn 1R}
=5, (St

n,n—1

n— 171‘8
)S "'32(5;21"'3;1)51‘4%71

Since the g-antisymmetrizer A¢ is proportional to an idempotent (indeed (A%)? =
nlA?) and maps the space (C™)®™ into a one dimensional subspace, both sides
of BI) must be equal to A% times a series sdet S(u) in u=! with coefficients in
U (Lgly), ie

ALS1(R]y -+ RY,)Sa(Rly -~ Rb,)S3 - S R)

We call this series the Sklyanin determinant of S(u).
For m € &, set Wy = ex(1) ® €r(2) ® - - €x(n) and let [(w) be the length of the
permutation w. We have

Alw, = (—q) "™ A%wyy and AL w, = (—q)'M AL

Sp = Alsdet S(u).

n—1,n

-1

Hence

sdet S(u)Alw,

= (—q)""Msdet S (u) Alwig

= (—q) "™ ARSI (Rl, -+ RY,)Sa(RYy -+ RL,) S5 -+ Sa RE_y , Swia

= (=) (8] u)Snr+ Sa(Shy - SH)SIAL wia

= () O8,(8} )t Sa(Sh - S AL
:q—m(w)A%Sl(Rb... 1n)5’2(R;3--~R;n)S3 ~Sp_ 1Rn 1,nOnWr.

The following theorem provides an expression of sdet S(u) in terms of quantum
determinants.

Theorem 8.2. We have
(8.2) sdetS(u) = 0, ¢ (u)qdetT (ug®"?)(qdetT(u"1)) "1,

where Oy, ¢(u) is the Sklyanin determinant of G*(u) and the quantum determinant
is defined by

qdetT(u) = Z (_Q)_l(a)tﬂ(l)l(uq_2n+2)ta(2)2(uq_2n+4) T ta‘(n)n(u)
ceS,
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Proof. We follow the arguments of [MNO]. We regard 4(0(Lgl,,) as a subalgebra of

Uy (Lgly,); see their Theorem 6.3. We substitute S(u) = T(u)Gg(u)T_l(u’l) into
the identity (RI) and transform the left hand side using the relations

1,1

T, (ui ) Rg(ui b, wg) T (ug) = Ty (ug) Rig(uy Y up) Ty (up ),

which is equivalent to (6.6]). Then the left hand side of (81]) becomes
(8.3)

AZTl(u)T2(Uq2)-~'Tn( 20— Q)R( )_,1

=1, g _ =1, 1 _on
(w Ty (u'q?)---T, (u g "),

n

where

R(U) = Gﬁ(u)RIQ RT Gg( ) . .Gi_l(uq%L 4)RT Gf( 2n—2).

In n—1ln-"n

By the definition of the quantum determinant gqdet T'(u), we have
(8.4) ATy (u)To(ug?) - - T (ug* ™ ?) = AlqdetT (¢*" 2u).

Therefore, we can bring (83]) to the form

—1

QdetT (") ALR(T, (w0 )T, (wlg ™) T, (@l 2 2),

n

By Lemma[6.12] the mapping S(u) — G¢(u) defines a representation of the twisted
quantum loop algebra 4! (Lgl,). Therefore, 8.I) gives

ASR(u) = S(u)A? " = Alsdet G (u) = A%0, ¢ (u),
where

S(u) = G (ug®2)(S]

T )Gy (ug® %) - G5 (ug?) (ST, -+ S31) G5 ().
Now we write (B3] as

1——1 .

qdet T(q2n72u)§’(u) (An T, (uil)T2 1(u71q72) B 'T;I(U1q2n+2)>'

Furthermore, we have
AT (@ OTy (g ) - T, (g ) = AL (adet T (™))

This follows from (84) (with T instead of T') if we multiply both sides from the

right by T;l(qu"_Q)T;il (ug®=4) - -T;l(u), replace u with u=*¢~2"*2 and then

conjugate the two sides by the permutation of the indices 1,...,n which sends i to

n—i+1. (Notice that AZ becomes Ag‘l after the conjugation). Now (B3] becomes

qdetT(¢*"2u) (5‘(u)A‘,{1> (qdetT(u~1))~*
= qdetT(¢*" 2u)(qdetT (u™1)) "1 A20,, ¢ (u).

O

Corollary 8.3. The coefficients of the series sdet S(u) belong to the center of the
algebra U (Lgly,).
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Proof. This is an immediate consequence of the previous theorem and of the cen-
trality of qdet T'(u) and qdet T'(u) in U, (Lgl,). O

Introduce the series c(u) and the elements c;, of the center of the algebra L2 (Lgl,,)
by the formula

(oo}
c(u) = 0,¢(u) 'sdet S(u) = 1+ Z cru”".
k=1
Proposition 8.4. The coefficients ci, k > 1, are algebraically independent.
Proof. Use an argument similar to the one in Proposition 4.4 in [MRS]. O

Now we try to find an explicit expression for the scalar function 6, ¢(u). We

have (n — 1)!4%9 = A2A% | where A? | is the quantum antisymmetrizer in the

tensor product of the copies of End ¢C" corresponding to the indices 2,...,n. Note
that A? | commutes with GS(u). Furthermore, we have the identity

A T T pt TA
AL Riy - Ry, = Ry, R AT .

This follows from the Yang-Baxter relation and Proposition Bl Similarly we
define the operators A for i = 1,2,...,n — 2. Now we have:

( ]:[ i!) A0, ¢ (u)

=1
<7l
3
<
3

2
'> ALAL_ | GS(w)RY, - R}, G5(uq?)

n‘n—1
1

Gy (ug™ )R]

n—1,n

G5, (ug®?)

2
n—ng (qu)
1

) ALGS ()R, - Bl (A

e

n—1

(ug® )Ry .G (ug™ %))

n—1n>~n

= A1GS(u) (Az_lGémqZ) - (A3G2_1<uq2n4>RL_17H<A%Gi<uq2"2)))).
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Consider the action of the operators on w =ep41 ® - @ ep—p D (€p @ €n_pt1) @
- ® (e1 ® ey), where {e;}" ; denotes the canonical basis of C". We obtain

i (H |> AL, (0
=1
- (A%Gﬂu) (G )
- (A6 (PR M(AiGiwq?“)))))w
- (A;icﬁ(u) (G )
- (34165 (g™ )R] 1,LG$;<uq2“>))>w

— 41650+ (G (AGS ua™=)-+ (Wg83l)w)) )
— el (4165 0) - (ALAAGE (") G5 w0+ )

= 21310} . (u) (A%G§ (u) -+ (AJGS _5(ug™®) - Go_y(ug®™ %) -- )w)

(41650 (A r Gl 72) o)

Il
/N
Il »
- oo
)
.
[
|
&
n
£
~

ALGS () -+ A1 5 (w))

Il
/N
N W
s

S
/N
.

& 3
|
&
~
£
~
VS

- ( T u) (H%gw)( 11 9;’§(u)>Anw
i=1 j=1 k=2p+1
This implies that
On.g(u) = (Hém(u)>< IT 4 ))
=1 j=2p+1

where 0; ¢ (u) satisfies

) It 2n—4
AgiGQié(u)w:Aginz—Qi-&-l(uq " Z)RL 2i+1,n—2i+2
In—4i+2
"GEL—QHQ(WI nodi )

for 1 <14 <p, and 9’- (u) satisfies

T T
Rn 2i+2,n—2i+3 " Rn—2i+2,nw

T
Rn—j-&-lmwp

/130;7 (u )wp—A G5 e (u ug® )R J+ln—j+2°



2568 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

for 2p+1 < 5 < n. It suffices to find 5275(11,),5475(114),...,521)15(’&),0/21)_’_1)5(11,),
090U 0, (u). We will give details of one case below and simply state
the formulae for the others because computations are quite long and tedious.

If p=0and 1< j<n, we have

fuii‘+1_£_1unfj+1 £ _
() = == -1 ' H(unijJrl — Up—k)

Un—j+1 = Up_j11

k=1
and
n n 1 j—1
§un_ 1 f Unp—j+1 _
u) = H Be(u) = H ( ]f 1 — (pljpr = un—r) | |-
j=1 j=1 Un—j+1 = Up_j41 Pt}
If p > 1, then
132
O26(u) = up —up " — (€-¢ )1 :
Up — Un

We also need to consider the tensor product

Wi =ept1®  en_p @ (€p ®en_pt1)®
@ (6 Ren—it1) Ve ® €1 Repn_ip2 ® - @ en.

Then
(2i — 2)1A3,0: ¢ (w)w;
= (=) VTP AL 0, ¢ (w)w
= (- )(z R Q)Aq sz 21+1(uq2n 4Z)RIL 2i4+1,n
"Gifzin(uqzn 4Z+2)Rn 2i+2,n " "R272i+2,n72i+3‘43i72w
= (20 = 2VALG5 oy (ug™ )R o1 0 0iis
"Gifzin(uq% 4l+2)Rn 2i+2,n—2i+3 " R'Lf2i+2,nwi7
i.e.,

e _ iq A€ 2n—4
Agi92i,§(u)wi = AgiGnﬂiH( " z)RIL 2i+1,n—2i+2
2n—4i+2
"G272i+2(uq oA )RL 2i42,n—2i+3 ..R11,72i+2,nwi'
Now assume that 2 < i < p. By the property of Agi_l, we have

2n—4i+2\ pt T )
)R, 2i+2,n—2i+3 " Rn72i+2,nwl

— A, (/131-71(“%)) +B; - (Agifl(w;))’

A 3
AgiflGn72i+2(uq

where

Wi = epy1Q- - Qen_p®(epQen_pr1)®- - Q(e;®e;)Ve1 Q- €1 Q€n_iy2®@- - ®en,

2i—3 2i-3
Bi = H (U Lgi4n — Unr) and A; = —< H (tnLig2 — “n—k)> Un gy (€ —€71).

k=0 k=1
Let

Wi = epr1® - Ben_pR(epRen_pi1)®- - -Qe;Pe1®: - - € 10en_i41®en_i12®- - -Qep
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and
W; = epy1Q- - Ben_p@(ep®en_pi1)® - ®(ei110en_;)Re1Q- - €;®en_i11®" - -Qey.
Now we have
(20 — 1)1 A3,0; ¢ (u)w;

= Aqun 2z+1(uq2n 4Z)RIL 2i+1,n

Rl 2+1,n—2i+2 <A A3, (wi) + B; - A, (w ))
= (=)' (20 - )14, - AginL—Zi+l(uq2n_4z)RL 2i+1,n—2i+2
+ (20 = 1)!B; - AgiGi—Qi-‘rl(uqzn_4i)Rl—2i+l,n—2i+2 e 'RIL—Qi—&-an;

= (2i - 1)!((_(1)171-141’ -Ci+ B - Dz‘);lgiwi,

Rt

n—2i+1,nWi

where
AT . A9 € 2n—41 t —
Ci Ay w; _AQiGn72i+1( q )Rn 2i+1,n—2i+2 " Rn72i+1,nwl
and
A9 . A9 € 2n—4i t ’
D;Ajw; = A2iGn—2i+1(uq )Rn 2i+1,n—2i+2 " Rn—2i+1,nwi'

Rather long computations lead to

k=1
and
2i—2
_ ) -1 _1
D; = (un—it1 — uni+1)< H (Up—9i41 — “nk))
k=1
Therefore

O2i¢(u) = ¢ ((—q)HAi -Ci+B; - Di)
2 ) — —
I L e
H H Un— 2"“" 1~ Un—k) Up —Up_9490) — ——7 — |-
r=2k=3-r Up 942 ~ Un
For 2p + 1 < j < n, we replace w by
Wj=e€pt1 @ Qenjipt1 Q€1 @ €pQep_jipra @ - Qey
and let w; be
Wy =epp1® - Qen_jtp@e1 @ €pQen_jipr1 @ Qe

‘We have

i P
Rn—j-i—l,nwj .

Il
o
<.
Q
§
Q
+
=
—~
N
[
no
3
l\')
3,
:
Q
+
=
3
kv
+
no
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Set

JO = {41042, =28, I = e+ 1,42, p—1), I ={p.p+1,.. .52},

I =fj—p—1—p...i—2} JO={r+1lr+2,. ... j—p—2}

and

= ~1 - el
F(1) = (=9 (H(unij+1 —unk)> Un—g+1§ un:glﬂf |

Un—j4+1 = Up_j4

5 (f[ Up—jy1 unk)) (—un,r(q—q_1)>

r=0

> <( UnZyaa (4 - q_l))m(—q_l)2(j—r)—p—3—\1|

1cJm

X H (Uﬁijﬂ - Unl'c))

keI nuJgs?

= (—Q)p(qu = Dup—j41 <1:[(ur_llj+1 - un—k)) .

k=1

Let’s explain from where this formula for F;(2) comes, the other ones being
obtained via similar considerations. The value of r indicates the first index in
Rl_j_i_l n_, Where we consider the operator Y . ,_1 E;; ® E;;. This explains the

’ 1>7

product ( Z;é(ufbijﬂ - un,k)) (—un—r(q— qfl)) since for k < r only the oper-

ator szzl E; ® Ejj in Rl_jﬂ,n_k is applied. The index set I indices the factors
Rlijﬂmik where the operator Et?jl E;; @ Ej; is applied, so if k ¢ I, then instead
it is the operators Z?; 1 9% E;; ® Ej; and Z:lj 4% E;; ® Ej; which are applied.

The factor (—q_l)Q(j_T) p=3=IIl comes by applying Aq to the resulting tensor to
bring it back to w; and by counting the number of i 1nver51ons

j—p—2 [r—1
Fj(?’) = Z <H(Unij+1 —unk)> (_un—r(q—q_l))
r=0 \k=0
) Z ((_ur_tijﬁ—l(q—q1))|II(_q1)2j2rp3I
1"

X H (u;ij-i-l - Un—k)>

keJ{\1uJ§"

j—2
= (_q)p(qu—Zp—Q - 1)un*j+1 (H( nlj+1 unk)) )

k=1
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F;(4) = j§2 <ﬁ(un1j+1 - unk)> ( —Un—r(q— q_l))

r=0 k=0
_ 1]
x> ((—unij+1<q ) (—g Pl
ICJ™
-1
x H (unj+1_un—k)>
keJ(IN\T

i
(2= (T 0= 0o
1 )
n—j+1 ~ Un—jtp+1

u

j—2 r—1
F;(5) = Z <H(un1j+1 - unk)) ( - ur:ij+1(q - q_l))

r=j—p—1 \k=0

% _ufl ( -1 Il _ —1\p—1—|I|

n—j+1\d — ¢ ) (—=q7)
ICJ™
X H (u’r_Lij—Q—l - “n—k)>
keJ(MI\T

ot = D (T~ 0o

= -1
Up—jr1 — Un—j+p+1

Using these, we can compute

(—a) "0 ¢(u)

-1
Uy — j+1§ un*jJrlg

“ﬁi21+1(§ )

= Fi(1) + F;(2) —— + (F53) — F(2)) —~1
Un—2i+1 = Up_2441 Un—j+1 = Up—j41
Up—2i11(E—€71) Up—2i41(€E —E71)
+ (Fj(4) — F;(3)) o2 4+ F(5) e
Un—2i+1 = Up_9;41 Un—2i+1 = Up_9;41

Un—2i -t
= (1) + B - BEE+ (5 + 5(5)- j:(fu_f :
n—2i n—2i4+1

= (0Pt st = o) L 06) (H ol )>

k=1
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