Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On simplicial resolutions of framed links


Authors: Fengchun Lei, Fengling Li and Jie Wu
Journal: Trans. Amer. Math. Soc. 366 (2014), 3075-3093
MSC (2010): Primary 57M25, 55P35; Secondary 55Q40, 55U10, 57M07
DOI: https://doi.org/10.1090/S0002-9947-2013-05957-0
Published electronically: December 3, 2013
MathSciNet review: 3180740
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate the simplicial groups obtained from the link groups of naive cablings on any given framed link. Our main result states that the resulting simplicial groups have the homotopy type of the loop space of a wedge of $ 3$-spheres. This gives simplicial group models for some loop spaces using link groups.


References [Enhancements On Off] (What's this?)

  • [1] A. K. Bousfield, A vanishing theorem for the unstable Adams spectral sequence, Topology 9 (1970), 337-344. MR 0266212 (42 #1119)
  • [2] A. K. Bousfield and E. B. Curtis, A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc. 151 (1970), 457-479. MR 0267586 (42 #2488)
  • [3] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The $ {\rm mod}-p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. MR 0199862 (33 #8002)
  • [4] Gerhard Burde and Heiner Zieschang, Knots, de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter and Co., Berlin, 1985. MR 808776 (87b:57004)
  • [5] P. Carrasco and A. M. Cegarra, Group-theoretic algebraic models for homotopy types, J. Pure Appl. Algebra 75 (1991), no. 3, 195-235. MR 1137837 (93b:55026), https://doi.org/10.1016/0022-4049(91)90133-M
  • [6] Gunnar Carlsson, A simplicial group construction for balanced products, Topology 23 (1984), no. 1, 85-89. MR 721454 (85e:55019), https://doi.org/10.1016/0040-9383(84)90027-2
  • [7] F. R. Cohen and J. Wu, On braid groups and homotopy groups, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ., Coventry, 2008, pp. 169-193. MR 2508205 (2010i:55016), https://doi.org/10.2140/gtm.2008.13.169
  • [8] F. R. Cohen and J. Wu, On braid groups, free groups, and the loop space of the 2-sphere, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, Basel, 2004, pp. 93-105. MR 2039761 (2005b:55011)
  • [9] Daniel Conduché, Modules croisés généralisés de longueur $ 2$, Proceedings of the Luminy conference on algebraic $ K$-theory (Luminy, 1983), 1984, pp. 155-178 (French, with English summary). MR 772056 (86g:20068), https://doi.org/10.1016/0022-4049(84)90034-3
  • [10] Edward B. Curtis, Some relations between homotopy and homology, Ann. of Math. (2) 82 (1965), 386-413. MR 0184231 (32 #1704)
  • [11] Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107-209 (1971). MR 0279808 (43 #5529)
  • [12] F. Fang, F. Lei, J. Li and J. Wu. On Brunnian-type links and the link invarients given by homotopy groups of spheres, Preprint.
  • [13] Ralph H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333-370. MR 0004108 (2,320f)
  • [14] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354 (2002k:55001)
  • [15] Daniel M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282-312. MR 0111032 (22 #1897)
  • [16] Daniel M. Kan, On homotopy theory and c.s.s. groups, Ann. of Math. (2) 68 (1958), 38-53. MR 0111033 (22 #1898)
  • [17] Robion Kirby, A calculus for framed links in $ S^{3}$, Invent. Math. 45 (1978), no. 1, 35-56. MR 0467753 (57 #7605)
  • [18] J. Milnor, On the construction $ F[K]$, Algebraic Topology-A Student Guide, by J. F. Adams, 119-136, Cambridge Univ. Press.
  • [19] J. C. Moore, Homotopie des complexes mon$ \ddot {o}$ideaux, Seminaire Henri Cartan (1954-55).
  • [20] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 169-172. MR 0082671 (18,590f)
  • [21] D. G. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155-157. MR 0195097 (33 #3302)
  • [22] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin, 1967. MR 0223432 (36 #6480)
  • [23] N. Reshetikhin and V. G. Turaev, Invariants of $ 3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547-597. MR 1091619 (92b:57024), https://doi.org/10.1007/BF01239527

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M25, 55P35, 55Q40, 55U10, 57M07

Retrieve articles in all journals with MSC (2010): 57M25, 55P35, 55Q40, 55U10, 57M07


Additional Information

Fengchun Lei
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
Email: fclei@dlut.edu.cn

Fengling Li
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
Email: dutlfl@163.com

Jie Wu
Affiliation: Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076
Email: matwuj@nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9947-2013-05957-0
Keywords: Framed link, simplicial group, link group, naive cabling, loop space
Received by editor(s): May 14, 2012
Received by editor(s) in revised form: September 9, 2012
Published electronically: December 3, 2013
Additional Notes: The first author was partially supported by a key grant (No.10931005) of NSFC and a grant (No.11329101) of NSFC
The second author was supported by two grants (No.11101058) and (No.11329101) of NSFC and a grant (No.2011M500049) of China Postdoctoral Science Foundation
The third author was partially supported by the AcRF Tier 2 (WB NO. R-146-000-143-112) of MOE of Singapore and a grant (No. 11329101) of NSFC
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society