Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Non-commutative Hodge structures: Towards matching categorical and geometric examples


Author: D. Shklyarov
Journal: Trans. Amer. Math. Soc. 366 (2014), 2923-2974
MSC (2010): Primary 16E45, 16E40
DOI: https://doi.org/10.1090/S0002-9947-2014-05913-8
Published electronically: January 17, 2014
MathSciNet review: 3180736
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The subject of the present work is the de Rham part of non-commutative Hodge structures on the periodic cyclic homology of differential graded algebras and categories. We discuss explicit formulas for the corresponding connection on the periodic cyclic homology viewed as a bundle over the punctured formal disk. Our main result says that for the category of matrix factorizations of a polynomial the formulas reproduce, up to a certain shift, a well-known connection on the associated twisted de Rham cohomology which plays a central role in the geometric approach to the Hodge theory of isolated singularities.


References [Enhancements On Off] (What's this?)

  • [1] Serguei Barannikov, Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices 23 (2001), 1243-1264. MR 1866443 (2002k:32017), https://doi.org/10.1155/S1073792801000599
  • [2] Serguei Barannikov, Non-commutative periods and mirror symmetry in higher dimensions, Comm. Math. Phys. 228 (2002), no. 2, 281-325. MR 1911737 (2003g:32025), https://doi.org/10.1007/s002200200656
  • [3] Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161 (German, with English summary). MR 0267607 (42 #2509)
  • [4] A. Căldăraru and J. Tu, Curved A-infinity algebras and Landau-Ginzburg models, arXiv:1007.2679.
  • [5] V. A. Dolgushev, D. E. Tamarkin, and B. L. Tsygan, Noncommutative calculus and the Gauss-Manin connection, Higher structures in geometry and physics, Progr. Math., vol. 287, Birkhäuser/Springer, New York, 2011, pp. 139-158. MR 2762543 (2011h:19001), https://doi.org/10.1007/978-0-8176-4735-3_7
  • [6] Tobias Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011), no. 2, 223-274. MR 2824483 (2012h:18014), https://doi.org/10.1215/00127094-1415869
  • [7] Ezra Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 65-78. MR 1261901 (95c:19002)
  • [8] Claus Hertling and Claude Sabbah, Examples of non-commutative Hodge structures, J. Inst. Math. Jussieu 10 (2011), no. 3, 635-674. MR 2806464 (2012f:14015), https://doi.org/10.1017/S147474801100003X
  • [9] Claus Hertling and Christian Sevenheck, Twistor structures, $ tt^\ast $-geometry and singularity theory, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 49-73. MR 2483748 (2009m:32022)
  • [10] Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016-1079. MR 2553377 (2010j:53182), https://doi.org/10.1016/j.aim.2009.05.016
  • [11] D. Kaledin, Motivic structures in non-commutative geometry, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 461-496. MR 2827805 (2012h:14055)
  • [12] L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 87-174. MR 2483750 (2009j:14052)
  • [13] Bernhard Keller, On the cyclic homology of ringed spaces and schemes, Doc. Math. 3 (1998), 231-259 (electronic). MR 1647519 (99i:16018)
  • [14] Bernhard Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151-190. MR 2275593 (2008g:18015)
  • [15] Maxim Kontsevich, XI Solomon Lefschetz Memorial Lecture series: Hodge structures in non-commutative geometry, Non-commutative geometry in mathematics and physics, Contemp. Math., vol. 462, Amer. Math. Soc., Providence, RI, 2008, pp. 1-21. Notes by Ernesto Lupercio. MR 2444365 (2009m:53236), https://doi.org/10.1090/conm/462/09058
  • [16] M. Kontsevich and Y. Soibelman, Notes on $ A_\infty $-algebras, $ A_\infty $-categories and non-commutative geometry, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 153-219. MR 2596638 (2011f:53183)
  • [17] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970 (94a:19004)
  • [18] Alexander Polishchuk and Leonid Positselski, Hochschild (co)homology of the second kind I, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5311-5368. MR 2931331, https://doi.org/10.1090/S0002-9947-2012-05667-4
  • [19] George S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222. MR 0154906 (27 #4850)
  • [20] C. Sabbah, Non-commutative Hodge structures, arXiv:1107.5890.
  • [21] Claude Sabbah, Isomonodromic deformations and Frobenius manifolds, Translated from the 2002 French edition, Universitext, Springer-Verlag London Ltd., London, 2007. An introduction. MR 2368364 (2008i:32015)
  • [22] Claude Sabbah, Fourier-Laplace transform of a variation of polarized complex Hodge structure, II, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 289-347. MR 2683213 (2011i:32014)
  • [23] Kyoji Saito and Atsushi Takahashi, From primitive forms to Frobenius manifolds, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 31-48. MR 2483747 (2010g:32048)
  • [24] J. Scherk and J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), no. 4, 641-665. MR 790119 (87b:32014), https://doi.org/10.1007/BF01456138
  • [25] Mathias Schulze, A normal form algorithm for the Brieskorn lattice, J. Symbolic Comput. 38 (2004), no. 4, 1207-1225. MR 2094217 (2005g:14007), https://doi.org/10.1016/j.jsc.2003.08.005
  • [26] E. Segal, The closed state space of affine Landau-Ginzburg B-models, arXiv:0904.1339v2.
  • [27] D. Shklyarov, Hirzebruch-Riemann-Roch theorem for DG algebras, arXiv:0710.1937.
  • [28] Boris Tsygan, On the Gauss-Manin connection in cyclic homology, Methods Funct. Anal. Topology 13 (2007), no. 1, 83-94. MR 2308582 (2008b:16011)
  • [29] Charles Weibel, The Hodge filtration and cyclic homology, $ K$-Theory 12 (1997), no. 2, 145-164. MR 1469140 (98h:19004), https://doi.org/10.1023/A:1007734302948

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E45, 16E40

Retrieve articles in all journals with MSC (2010): 16E45, 16E40


Additional Information

D. Shklyarov
Affiliation: Lehrstuhl für Analysis und Geometrie, Universität Augsburg, Institut für Mathematik, 86135 Augsburg, Germany
Address at time of publication: Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg i. Br., Germany
Email: dmytro.shklyarov@math.uni-augsburg.de, dmytro.shklyarov@math.uni-freiburg.de

DOI: https://doi.org/10.1090/S0002-9947-2014-05913-8
Received by editor(s): September 14, 2011
Received by editor(s) in revised form: June 21, 2012
Published electronically: January 17, 2014
Additional Notes: This research was supported by the ERC Starting Independent Researcher Grant StG No. 204757-TQFT (K. Wendland PI)
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society