Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Higher order extension of Löwner's theory: Operator $ k$-tone functions


Authors: Uwe Franz, Fumio Hiai and Éric Ricard
Journal: Trans. Amer. Math. Soc. 366 (2014), 3043-3074
MSC (2010): Primary 47A56, 47A60, 47A63, 15A39
DOI: https://doi.org/10.1090/S0002-9947-2014-05942-4
Published electronically: February 17, 2014
MathSciNet review: 3180739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The new notion of operator/matrix $ k$-tone functions is introduced, which is a higher order extension of operator/matrix monotone and convex functions. Differential properties of matrix $ k$-tone functions are shown. Characterizations, properties, and examples of operator $ k$-tone functions are presented. In particular, integral representations of operator $ k$-tone functions are given, generalizing familiar representations of operator monotone and convex functions.


References [Enhancements On Off] (What's this?)

  • [1] Ralph Abraham and Joel Robbin, Transversal mappings and flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0240836 (39 #2181)
  • [2] D. Alpay, V. Bolotnikov, A. Dijksma, and J. Rovnyak, Some extensions of Loewner's theory of monotone operator functions, J. Funct. Anal. 189 (2002), no. 1, 1-20. MR 1887627 (2003a:47029), https://doi.org/10.1006/jfan.2001.3856
  • [3] T. Ando, Topics on operator inequalities, Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo, 1978. MR 0482378 (58 #2451)
  • [4] Tsuyoshi Ando, Trace-inequalities and matrix-convex functions, Fixed Point Theory Appl. (2010), Art. ID 241908, 12. MR 2575158 (2010k:26013)
  • [5] Tsuyoshi Ando and Fumio Hiai, Operator log-convex functions and operator means, Math. Ann. 350 (2011), no. 3, 611-630. MR 2805638 (2012d:47048), https://doi.org/10.1007/s00208-010-0577-4
  • [6] Julius Bendat and Seymour Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58-71. MR 0082655 (18,588b)
  • [7] W. Bertram, Simplicial differential calculus, divided differences, and construction of Weil functors, Forum Mathematicum, to appear, arXiv:1009.2354v2.
  • [8] Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662 (98i:15003)
  • [9] A. L. Brown and H. L. Vasudeva, The calculus of operator functions and operator convexity, Dissertationes Math. (Rozprawy Mat.) 390 (2000), 48. MR 1798595 (2001m:47030), https://doi.org/10.4064/dm390-0-1
  • [10] J. Combes, Suites et Séries, PUF, 1995.
  • [11] Ju. L. Daleckii and S. G. Krein, Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations, Amer. Math. Soc. Transl., Ser. 2, Vol. 47, 1965, pp. 1-30.
  • [12] Chandler Davis, Notions generalizing convexity for functions defined on spaces of matrices, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 187-201. MR 0155837 (27 #5771)
  • [13] William F. Donoghue Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 207. MR 0486556 (58 #6279)
  • [14] Frank Hansen, Trace functions as Laplace transforms, J. Math. Phys. 47 (2006), no. 4, 043504, 11. MR 2226341 (2007g:47024), https://doi.org/10.1063/1.2186925
  • [15] Frank Hansen and Gert Kjærgård Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982), no. 3, 229-241. MR 1513286, https://doi.org/10.1007/BF01450679
  • [16] Frank Hansen and Jun Tomiyama, Differential analysis of matrix convex functions, Linear Algebra Appl. 420 (2007), no. 1, 102-116. MR 2277632 (2007j:47035), https://doi.org/10.1016/j.laa.2006.06.018
  • [17] Frank Hansen and Jun Tomiyama, Differential analysis of matrix convex functions. II, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 2, Article 32, 5. MR 2511925 (2010m:47026)
  • [18] Fumio Hiai, Matrix analysis: matrix monotone functions, matrix means, and majorization, Interdiscip. Inform. Sci. 16 (2010), no. 2, 139-248. MR 2761752 (2011k:15040), https://doi.org/10.4036/iis.2010.139
  • [19] Fumio Hiai and Hideki Kosaki, Means of Hilbert space operators, Lecture Notes in Mathematics, vol. 1820, Springer-Verlag, Berlin, 2003. MR 2005250 (2004h:47029)
  • [20] Fumio Hiai and Takashi Sano, Loewner matrices of matrix convex and monotone functions, J. Math. Soc. Japan 64 (2012), no. 2, 343-364. MR 2916071
  • [21] A. Korányi, On a theorem of Löwner and its connections with resolvents of selfadjoint transformations, Acta Sci. Math. Szeged 17 (1956), 63-70. MR 0082656 (18,588c)
  • [22] Fritz Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), no. 1, 18-42 (German). MR 1545602, https://doi.org/10.1007/BF01180403
  • [23] Karl Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177-216 (German). MR 1545446, https://doi.org/10.1007/BF01170633
  • [24] V. V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 233 (2006), no. 2, 515-544. MR 2214586 (2008e:47056), https://doi.org/10.1016/j.jfa.2005.09.003
  • [25] Mitsuru Uchiyama, Operator monotone functions, positive definite kernel and majorization, Proc. Amer. Math. Soc. 138 (2010), no. 11, 3985-3996. MR 2679620 (2012a:47031), https://doi.org/10.1090/S0002-9939-10-10386-4
  • [26] David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923 (3,232d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47A56, 47A60, 47A63, 15A39

Retrieve articles in all journals with MSC (2010): 47A56, 47A60, 47A63, 15A39


Additional Information

Uwe Franz
Affiliation: Département de mathématiques de Besançon, Université de Franche-Comté, 16, route de Gray, 25 030 Besançon Cedex, France
Email: uwe.franz@univ-fcomte.fr

Fumio Hiai
Affiliation: Tohoku University (Emeritus), Hakusan 3-8-16-303, Abiko 270-1154, Japan
Email: hiai.fumio@gmail.com

Éric Ricard
Affiliation: Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse-Normandie, BP 5186, 14032 Caen Cedex, France
Email: eric.ricard@unicaen.fr

DOI: https://doi.org/10.1090/S0002-9947-2014-05942-4
Keywords: Operator monotone function, operator convex function, matrix monotone function, matrix convex function, divided difference, operator $k$-tone function, matrix $k$-tone function, absolutely monotone function, completely monotone function.
Received by editor(s): June 7, 2011
Received by editor(s) in revised form: August 3, 2012
Published electronically: February 17, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society