Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multivariable averaging on sparse sets


Authors: P. LaVictoire, A. Parrish and J. Rosenblatt
Journal: Trans. Amer. Math. Soc. 366 (2014), 2975-3025
MSC (2010): Primary 37A45
DOI: https://doi.org/10.1090/S0002-9947-2014-06084-4
Published electronically: February 6, 2014
MathSciNet review: 3180737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonstandard ergodic averages can be defined for a measure-pre-
serving action of a group on a probability space, as a natural extension of classical (nonstandard) ergodic averages. We extend the one-dimensional theory, obtaining $ L^1$ pointwise ergodic theorems for several kinds of nonstandard sparse group averages, with a special focus on the group $ \mathbb{Z}^d$. Namely, we extend results for sparse block averages and sparse random averages to their analogues on virtually nilpotent groups, and extend Christ's result for sparse deterministic sequences to its analogue on $ \mathbb{Z}^d$. The second and third results have two nontrivial variants on $ \mathbb{Z}^d$: a ``native'' $ d$-dimensional average and a ``product'' average from the one-dimensional averages.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3) 25 (1972), 603-614. MR 0379672 (52 #577)
  • [2] A. Bellow and V. Losert, On sequences of density zero in ergodic theory, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 49-60. MR 737387 (86c:28034), https://doi.org/10.1090/conm/026/737387
  • [3] Alexandra Bellow, Roger Jones, and Joseph Rosenblatt, Convergence for moving averages, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 43-62. MR 1053798 (91g:28021), https://doi.org/10.1017/S0143385700005381
  • [4] J. Bourgain, An approach to pointwise ergodic theorems, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 204-223. MR 950982 (90b:28016), https://doi.org/10.1007/BFb0081742
  • [5] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), no. 1, 39-72. MR 937581 (89f:28037a), https://doi.org/10.1007/BF02776301
  • [6] Emmanuel Breuillard.
    Geometry of locally compact groups of polynomial growth and shape of large balls.
    Preprint, 2007; revised 2012. arXiv.org/abs/0704.0095
  • [7] Zoltán Buczolich and R. Daniel Mauldin, Divergent square averages, Ann. of Math. (2) 171 (2010), no. 3, 1479-1530. MR 2680392 (2011e:37017), https://doi.org/10.4007/annals.2010.171.1479
  • [8] Michael Christ, Weak type $ (1,1)$ bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1, 19-42. MR 951506 (89m:42013), https://doi.org/10.2307/1971461
  • [9] Michael Christ, A $ T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601-628. MR 1096400 (92k:42020)
  • [10] Michael Christ.
    A weak type $ (1,1)$ inequality for maximal averages over certain sparse sequences.
    Preprint, 2011. arXiv.org/abs/1108.5664
  • [11] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41 #2468)
  • [12] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [13] Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889-935. MR 1645330 (2000b:28019), https://doi.org/10.1017/S0143385798108349
  • [14] Ulrich Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter and Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411 (87i:28001)
  • [15] Patrick LaVictoire, An $ L^1$ ergodic theorem for sparse random subsequences, Math. Res. Lett. 16 (2009), no. 5, 849-859. MR 2576702 (2011b:60014)
  • [16] John Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447-449. MR 0244899 (39 #6212)
  • [17] Pierre Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 415-445 (French, with English summary). MR 741395 (85m:53040), https://doi.org/10.1017/S0143385700002054
  • [18] Joseph M. Rosenblatt and Máté Wierdl, Pointwise ergodic theorems via harmonic analysis, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), London Math. Soc. Lecture Note Ser., vol. 205, Cambridge Univ. Press, Cambridge, 1995, pp. 3-151. MR 1325697 (96c:28025), https://doi.org/10.1017/CBO9780511574818.002
  • [19] S. Sawyer, Maximal inequalities of weak type, Ann. of Math. (2) 84 (1966), 157-174. MR 0209867 (35 #763)
  • [20] E. M. Stein, On limits of seqences of operators, Ann. of Math. (2) 74 (1961), 140-170. MR 0125392 (23 #A2695)
  • [21] Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012 (2008a:11002)
  • [22] A. A. Tempelman, Ergodic theorems for general dynamical systems, Dokl. Akad. Nauk SSSR 176 (1967), 790-793 (Russian). MR 0219700 (36 #2779)
  • [23] Roman Urban and Jacek Zienkiewicz, Weak type $ (1,1)$ estimates for a class of discrete rough maximal functions, Math. Res. Lett. 14 (2007), no. 2, 227-237. MR 2318621 (2008i:42045)
  • [24] André Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948 (French). MR 0027151 (10,262c)
  • [25] Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441-479 (German). MR 1511670, https://doi.org/10.1007/BF01456804
  • [26] Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemanniann manifolds, J. Differential Geometry 2 (1968), 421-446. MR 0248688 (40 #1939)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A45

Retrieve articles in all journals with MSC (2010): 37A45


Additional Information

P. LaVictoire
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Address at time of publication: Principal Engineer, Quixey, 278 Castro Street, Mountain View, California 94041
Email: patlavic@math.wisc.edu, patrick@quixey.com

A. Parrish
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: ajnparrish@gmail.com

J. Rosenblatt
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: rosnbltt@illinois.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06084-4
Received by editor(s): June 21, 2012
Published electronically: February 6, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society