Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Actions of $ K(\pi,n)$ spaces on $ K$-theory and uniqueness of twisted $ K$-theory


Authors: Benjamin Antieau, David Gepner and José Manuel Gómez
Journal: Trans. Amer. Math. Soc. 366 (2014), 3631-3648
MSC (2010): Primary 19L50, 55N15
DOI: https://doi.org/10.1090/S0002-9947-2014-05937-0
Published electronically: March 14, 2014
MathSciNet review: 3192610
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the uniqueness of twisted $ K$-theory in both the real and complex cases using the computation of the $ K$-theories of Eilenberg-MacLane spaces due to Anderson and Hodgkin. As an application of our method, we give some vanishing results for actions of Eilenberg-MacLane spaces on $ K$-theory spectra.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, Ill., 1974. Chicago Lectures in Mathematics. MR 0402720 (53 #6534)
  • [2] J. F. Adams and S. B. Priddy, Uniqueness of $ B{\rm SO}$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 475-509. MR 0431152 (55 #4154)
  • [3] D. W. Anderson and Luke Hodgkin, The $ K$-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 317-329. MR 0231369 (37 #6924)
  • [4] Matthew Ando, Andrew J. Blumberg, and David Gepner, Twists of $ K$-theory and TMF, Superstrings, geometry, topology, and $ C^\ast $-algebras, Proc. Sympos. Pure Math., vol. 81, Amer. Math. Soc., Providence, RI, 2010, pp. 27-63. MR 2681757 (2011j:55011)
  • [5] M. Ando, A. J. Blumberg, D. J. Gepner, M. J. Hopkins, and C. Rezk, Units of ring spectra and Thom spectra, ArXiv e-prints, available at http://arxiv.org/abs/0810.4535.
  • [6] B. Antieau and B. Williams, The period-index problem for twisted topological $ K$-theory, ArXiv e-prints, available at http://arxiv.org/abs/1104.4654. To appear in Geometry & Topology.
  • [7] Michael Atiyah and Graeme Segal, Twisted $ K$-theory, Ukr. Mat. Visn. 1 (2004), no. 3, 287-330; English transl., Ukr. Math. Bull. 1 (2004), no. 3, 291-334. MR 2172633 (2006m:55017)
  • [8] Michael Atiyah and Graeme Segal, Twisted $ K$-theory and cohomology, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 5-43. MR 2307274 (2008j:55003), https://doi.org/10.1142/9789812772688_0002
  • [9] M. F. Atiyah and I. M. Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5-26. MR 0285033 (44 #2257)
  • [10] Peter Bouwknegt, Alan L. Carey, Varghese Mathai, Michael K. Murray, and Danny Stevenson, Twisted $ K$-theory and $ K$-theory of bundle gerbes, Comm. Math. Phys. 228 (2002), no. 1, 17-45. MR 1911247 (2003g:58049), https://doi.org/10.1007/s002200200646
  • [11] H. Cartan, Détermination des algèbres $ \textup {H}_*(\pi ,n;\mathbb{Z})$, Séminaire H. Cartan 7 (1954/1955), no. 1, 11-01-11-24.
  • [12] P. Donovan and M. Karoubi, Graded Brauer groups and $ K$-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 5-25. MR 0282363 (43 #8075)
  • [13] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Twisted equivariant $ K$-theory with complex coefficients, J. Topol. 1 (2008), no. 1, 16-44. MR 2365650 (2009c:19011), https://doi.org/10.1112/jtopol/jtm001
  • [14] José Manuel Gómez, On the nonexistence of higher twistings over a point for Borel cohomology of $ K$-theory, J. Geom. Phys. 60 (2010), no. 4, 678-685. MR 2602381 (2011e:19012), https://doi.org/10.1016/j.geomphys.2009.12.009
  • [15] Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, Birkhäuser, Boston, Mass., 1981. MR 641551 (82m:55014)
  • [16] Michael Joachim, A symmetric ring spectrum representing $ K{\rm O}$-theory, Topology 40 (2001), no. 2, 299-308. MR 1808222 (2001k:55011), https://doi.org/10.1016/S0040-9383(99)00063-4
  • [17] Max Karoubi, Twisted $ K$-theory--old and new, $ K$-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 117-149. MR 2513335 (2010h:19010), https://doi.org/10.4171/060-1/5
  • [18] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
  • [19] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659 (2010j:18001)
  • [20] I. Madsen, V. Snaith, and J. Tornehave, Infinite loop maps in geometric topology, Math. Proc. Cambridge Philos. Soc. 81 (1977), no. 3, 399-430. MR 0494076 (58 #13007)
  • [21] J. P. May and J. Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs, vol. 132, American Mathematical Society, Providence, RI, 2006. MR 2271789 (2007k:55012)
  • [22] C. A. McGibbon and J. M. Møller, On spaces with the same $ n$-type for all $ n$, Topology 31 (1992), no. 1, 177-201. MR 1153244 (92m:55008), https://doi.org/10.1016/0040-9383(92)90069-T
  • [23] W. Meier, Complex and real $ K$-theory and localization, J. Pure Appl. Algebra 14 (1979), no. 1, 59-71. MR 515487 (80b:55003), https://doi.org/10.1016/0022-4049(79)90013-6
  • [24] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 0159327 (28 #2544)
  • [25] Jonathan Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989), no. 3, 368-381. MR 1018964 (91d:46090)
  • [26] Bai-Ling Wang, Geometric cycles, index theory and twisted $ K$-homology, J. Noncommut. Geom. 2 (2008), no. 4, 497-552. MR 2438341 (2009h:19006), https://doi.org/10.4171/JNCG/27
  • [27] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)
  • [28] Zen-ichi Yosimura, A note on complex $ K$-theory of infinite CW-complexes, J. Math. Soc. Japan 26 (1974), 289-295. MR 0339131 (49 #3894)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 19L50, 55N15

Retrieve articles in all journals with MSC (2010): 19L50, 55N15


Additional Information

Benjamin Antieau
Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90095
Address at time of publication: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: antieau@math.ucla.edu, benjamin.antieau@gmail.com

David Gepner
Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Address at time of publication: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907
Email: djgepner@gmail.com, djgepner@gmail.com

José Manuel Gómez
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Address at time of publication: Departmento de Matemáticas, Universidad Nacional de Colombia, Medellín, AA 3840 Colombia
Email: jgomez@math.jhu.edu, jmgomez0@unal.edu.co

DOI: https://doi.org/10.1090/S0002-9947-2014-05937-0
Keywords: Twisted $K$-theory, units of ring spectra, topological Brauer groups
Received by editor(s): October 13, 2011
Received by editor(s) in revised form: August 16, 2012
Published electronically: March 14, 2014
Additional Notes: The first author was supported in part by the NSF under Grant RTG DMS 0838697
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society