Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Determinacy from strong reflection


Authors: John Steel and Stuart Zoble
Journal: Trans. Amer. Math. Soc. 366 (2014), 4443-4490
MSC (2010): Primary 03E45; Secondary 03E35
DOI: https://doi.org/10.1090/S0002-9947-2013-06058-8
Published electronically: May 28, 2013
MathSciNet review: 3206466
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Axiom of Determinacy holds in the inner model $ L(\mathbb{R})$ assuming Martin's Maximum for partial orderings of size c.


References [Enhancements On Off] (What's this?)

  • [1] Qi Feng and Thomas Jech, Projective stationary sets and a strong reflection principle, J. London Math. Soc. (2) 58 (1998), no. 2, 271-283. MR 1668171 (2000b:03166), https://doi.org/10.1112/S0024610798006462
  • [2] Qi Feng, Menachem Magidor, and Hugh Woodin, Universally Baire sets of reals, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 203-242. MR 1233821 (94g:03095), https://doi.org/10.1007/978-1-4613-9754-0_15
  • [3] Matthew Foreman and Menachem Magidor, Large cardinals and definable counterexamples to the continuum hypothesis, Ann. Pure Appl. Logic 76 (1995), no. 1, 47-97. MR 1359154 (96k:03124), https://doi.org/10.1016/0168-0072(94)00031-W
  • [4] Foreman, M., Magidor, M., Shelah, S., Martin's Maximum, Saturated Ideals, and Nonregular Ultrafilters, Annals of Mathematics 127 (1998), 1-47
  • [5] Kai Hauser, Generic relativizations of fine structure, Arch. Math. Logic 39 (2000), no. 4, 227-251. MR 1758628 (2001h:03097), https://doi.org/10.1007/s001530050145
  • [6] Thomas Jech, Stationary sets, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 93-128. MR 2768680, https://doi.org/10.1007/978-1-4020-5764-9_2
  • [7] Alexander S. Kechris and W. Hugh Woodin, Equivalence of partition properties and determinacy, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6 i., 1783-1786. MR 699440 (84m:03070)
  • [8] Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I, Lecture Notes in Logic, vol. 31, Association for Symbolic Logic, Chicago, IL, 2008. Edited by Alexander S. Kechris, Benedikt Löwe and John R. Steel. MR 2463612 (2010b:03003)
  • [9] Donald A. Martin and John R. Steel, A proof of projective determinacy, J. Amer. Math. Soc. 2 (1989), no. 1, 71-125. MR 955605 (89m:03042), https://doi.org/10.2307/1990913
  • [10] William J. Mitchell and John R. Steel, Fine structure and iteration trees, Lecture Notes in Logic, vol. 3, Springer-Verlag, Berlin, 1994. MR 1300637 (95m:03099)
  • [11] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam, 1980. MR 561709 (82e:03002)
  • [12] Itay Neeman, Optimal proofs of determinacy, Bull. Symbolic Logic 1 (1995), no. 3, 327-339. MR 1349683 (96m:03032), https://doi.org/10.2307/421159
  • [13] Itay Neeman, Optimal proofs of determinacy. II, J. Math. Log. 2 (2002), no. 2, 227-258. MR 1938924 (2003k:03065), https://doi.org/10.1142/S0219061302000175
  • [14] Ralf Schindler and John Steel, The self-iterability of $ L[E]$, J. Symbolic Logic 74 (2009), no. 3, 751-779. MR 2548477 (2011c:03113), https://doi.org/10.2178/jsl/1245158084
  • [15] Schindler, R., Steel, J., The Strength of AD, unpublished manuscript.
  • [16] Schindler, R., Steel, J., The Core Model Induction, unpublished manuscript.
  • [17] John R. Steel, Scales on $ \Sigma ^{1}_{1}$ sets, Cabal seminar 79-81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp. 72-76. MR 730588, https://doi.org/10.1007/BFb0071695
  • [18] John R. Steel, The core model iterability problem, Lecture Notes in Logic, vol. 8, Springer-Verlag, Berlin, 1996. MR 1480175 (99k:03043)
  • [19] Wadge degrees and projective ordinals. The Cabal Seminar. Volume II, Lecture Notes in Logic, vol. 37, Association for Symbolic Logic, La Jolla, CA, 2012. Edited by Alexander S. Kechris, Benedikt Löwe and John R. Steel. MR 2906066 (2012j:03009)
  • [20] John R. Steel, An outline of inner model theory, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1595-1684. MR 2768698, https://doi.org/10.1007/978-1-4020-5764-9_20
  • [21] John R. Steel, Derived models associated to mice, Computational prospects of infinity. Part I. Tutorials, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 14, World Sci. Publ., Hackensack, NJ, 2008, pp. 105-193. MR 2449479 (2009m:03082), https://doi.org/10.1142/9789812794055_0003
  • [22] John R. Steel, PFA implies $ {\rm AD}^{L(\mathbb{R})}$, J. Symbolic Logic 70 (2005), no. 4, 1255-1296. MR 2194247 (2008b:03069), https://doi.org/10.2178/jsl/1129642125
  • [23] John R. Steel, Scales in $ L({\bf R})$, Cabal seminar 79-81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp. 107-156. MR 730592, https://doi.org/10.1007/BFb0071699
  • [24] John R. Steel, Scales in $ {\bf K}(\mathbb{R})$, Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I, Lect. Notes Log., vol. 31, Assoc. Symbol. Logic, Chicago, IL, 2008, pp. 176-208. MR 2463615, https://doi.org/10.1017/CBO9780511546488.011
  • [25] W. Hugh Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, de Gruyter Series in Logic and its Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1999. MR 1713438 (2001e:03001)
  • [26] Zoble, S., Stationary Reflection and the Determinacy of Inductive Games, Doctoral Dissertation, University of California at Berkeley, 2000
  • [27] Stuart Zoble, Stationary reflection and the universal Baire property, Fund. Math. 191 (2006), no. 1, 45-56. MR 2232195 (2007a:03058), https://doi.org/10.4064/fm191-1-3

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E45, 03E35

Retrieve articles in all journals with MSC (2010): 03E45, 03E35


Additional Information

John Steel
Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720-2284
Email: steel@math.berkeley.edu

Stuart Zoble
Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
Email: azoble@wesleyan.edu

DOI: https://doi.org/10.1090/S0002-9947-2013-06058-8
Keywords: Stationary reflection, nonstationary ideal, determinacy
Received by editor(s): July 21, 2009
Received by editor(s) in revised form: December 17, 2012
Published electronically: May 28, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society