Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Firmly nonexpansive mappings in classes of geodesic spaces


Authors: David Ariza-Ruiz, Laurenţiu Leuştean and Genaro López-Acedo
Journal: Trans. Amer. Math. Soc. 366 (2014), 4299-4322
MSC (2010): Primary 47H09, 47H10, 53C22; Secondary 03F10, 47H05, 90C25, 52A41
DOI: https://doi.org/10.1090/S0002-9947-2014-05968-0
Published electronically: March 26, 2014
MathSciNet review: 3206460
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization due to their correspondence with maximal monotone operators. In this paper we do a thorough study of fixed point theory and the asymptotic behaviour of Picard iterates of these mappings in different classes of geodesic spaces, such as (uniformly convex) $ W$-hyperbolic spaces, Busemann spaces and CAT(0) spaces. Furthermore, we apply methods of proof mining to obtain effective rates of asymptotic regularity for the Picard iterations.


References [Enhancements On Off] (What's this?)

  • [1] M. Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), no. 2, 689-701. DOI 10.1007/s11856-012-0091-3. MR 3047087
  • [2] Heinz H. Bauschke, Sarah M. Moffat, and Xianfu Wang, Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality, Set-Valued Var. Anal. 20 (2012), no. 1, 131-153. MR 2886508 (2012m:47082), https://doi.org/10.1007/s11228-011-0187-7
  • [3] H. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123-144. MR 0257805 (41 #2454)
  • [4] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)
  • [5] Felix E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. MR 0215141 (35 #5984)
  • [6] Ronald E. Bruck Jr., Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355. MR 0341223 (49 #5973)
  • [7] Ronald E. Bruck and Simeon Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), no. 4, 459-470. MR 0470761 (57 #10507)
  • [8] M. Bruhat and J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251. MR 0327923
  • [9] Herbert Busemann, Spaces with non-positive curvature, Acta Math. 80 (1948), 259-310. MR 0029531 (10,623g)
  • [10] Herbert Busemann, The geometry of geodesics, Academic Press Inc., New York, N.Y., 1955. MR 0075623 (17,779a)
  • [11] Michael Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206-208. MR 0291917 (45 #1005)
  • [12] Michael Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 44 (1974), 369-374. MR 0358451 (50 #10917)
  • [13] Rafa Espínola and Aurora Fernández-León, $ {\rm CAT}(k)$-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), no. 1, 410-427. MR 2508878 (2010d:47092), https://doi.org/10.1016/j.jmaa.2008.12.015
  • [14] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228-249 (German). MR 1544613, https://doi.org/10.1007/BF01504345
  • [15] O. P. Ferreira, L. R. Lucambio Pérez, and S. Z. Németh, Singularities of monotone vector fields and an extragradient-type algorithm, J. Global Optim. 31 (2005), no. 1, 133-151. MR 2141129 (2006b:58009), https://doi.org/10.1007/s10898-003-3780-y
  • [16] Jesús García-Falset and Simeon Reich, Zeroes of accretive operators and the asymptotic behavior of nonlinear semigroups, Houston J. Math. 32 (2006), no. 4, 1197-1225 (electronic). MR 2268479 (2007m:47156)
  • [17] Kazimierz Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 115-123. MR 729507 (85a:47059), https://doi.org/10.1090/conm/021/729507
  • [18] Kazimierz Goebel and Simeon Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker Inc., New York, 1984. MR 744194 (86d:58012)
  • [19] Jürgen Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 173-204. MR 1385525 (98a:58049), https://doi.org/10.1007/BF01191341
  • [20] Jürgen Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), no. 4, 659-673. MR 1360608 (96j:58043), https://doi.org/10.1007/BF02566027
  • [21] W. A. Kirk, Krasnosel'skiĭ's iteration process in hyperbolic space, Numer. Funct. Anal. Optim. 4 (1981/82), no. 4, 371-381. MR 673318 (84e:47067), https://doi.org/10.1080/01630568208816123
  • [22] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689-3696. MR 2416076 (2009m:54061), https://doi.org/10.1016/j.na.2007.04.011
  • [23] Ulrich Kohlenbach, Uniform asymptotic regularity for Mann iterates, J. Math. Anal. Appl. 279 (2003), no. 2, 531-544. MR 1974043 (2004d:47098), https://doi.org/10.1016/S0022-247X(03)00028-3
  • [24] Ulrich Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), no. 1, 89-128 (electronic). MR 2098088 (2005h:03110), https://doi.org/10.1090/S0002-9947-04-03515-9
  • [25] U. Kohlenbach, Applied proof theory: proof interpretations and their use in mathematics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. MR 2445721 (2009k:03003)
  • [26] U. Kohlenbach and L. Leuştean, Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 71-92. MR 2578604 (2011d:47112), https://doi.org/10.4171/JEMS/190
  • [27] Eva Kopecká and Simeon Reich, Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball, Nonlinear Anal. 70 (2009), no. 9, 3187-3194. MR 2503064 (2010d:47095), https://doi.org/10.1016/j.na.2008.04.023
  • [28] Tadeusz Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 79-88 (1980) (English, with Russian and Polish summaries). MR 687863 (84f:47066)
  • [29] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325 (2007), no. 1, 386-399. MR 2273533 (2008a:54048), https://doi.org/10.1016/j.jmaa.2006.01.081
  • [30] Laurenţiu Leuştean, Nonexpansive iterations in uniformly convex $ W$-hyperbolic spaces, Nonlinear analysis and optimization I. Nonlinear analysis, Contemp. Math., vol. 513, Amer. Math. Soc., Providence, RI, 2010, pp. 193-210. MR 2668247 (2011k:47099), https://doi.org/10.1090/conm/513/10084
  • [31] Chong Li, Genaro López, and Victoria Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc. (2) 79 (2009), no. 3, 663-683. MR 2506692 (2010e:47167), https://doi.org/10.1112/jlms/jdn087
  • [32] Teck Cheong Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182 (1977). MR 0423139 (54 #11120)
  • [33] Uwe F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), no. 2, 199-253. MR 1651416 (99m:58067)
  • [34] George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 0169064 (29 #6319)
  • [35] Jean-Jacques Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273-299 (French). MR 0201952 (34 #1829)
  • [36] Olavi Nevanlinna and Simeon Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979), no. 1, 44-58. MR 531600 (80e:47057), https://doi.org/10.1007/BF02761184
  • [37] A. Nicolae, Asymptotic behavior of averaged and firmly nonexpansive mappings in geodesic spaces, Nonlinear Anal. 87 (2013), 102-115. MR 3057039
  • [38] Athanase Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6, European Mathematical Society (EMS), Zürich, 2005. MR 2132506 (2005k:53042)
  • [39] Simeon Reich, Extension problems for accretive sets in Banach spaces, J. Functional Analysis 26 (1977), no. 4, 378-395. MR 0477893 (57 #17393)
  • [40] Simeon Reich and Itai Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 246-250. MR 902536 (88i:47030), https://doi.org/10.2307/2045990
  • [41] Simeon Reich and Itai Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), no. 6, 537-558. MR 1072312 (91k:47135), https://doi.org/10.1016/0362-546X(90)90058-O
  • [42] R. Tyrrell Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898. MR 0410483 (53 #14232)
  • [43] Ryszard Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc. 113 (1991), no. 3, 723-725. MR 1050023 (92b:47089), https://doi.org/10.2307/2048607
  • [44] E. N. Sosov, On analogues of weak convergence in a special metric space, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (2004), 84-89 (Russian); English transl., Russian Math. (Iz. VUZ) 48 (2004), no. 5, 79-83. MR 2101682 (2005f:54008)
  • [45] I. Stojkovic, Geometric approach to evolution problems in metric spaces, Ph.D. thesis, 2011, http://www.math.leidenuniv.nl/scripties/PhDThesisStojkovic.pdf.
  • [46] Wataru Takahashi, A convexity in metric space and nonexpansive mappings. I, Kōdai Math. Sem. Rep. 22 (1970), 142-149. MR 0267565 (42 #2467)
  • [47] Hong-Kun Xu, Strong asymptotic behavior of almost-orbits of nonlinear semigroups, Nonlinear Anal. 46 (2001), no. 1, Ser. A: Theory Methods, 135-151. MR 1845582 (2002g:47135), https://doi.org/10.1016/S0362-546X(99)00453-8

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47H09, 47H10, 53C22, 03F10, 47H05, 90C25, 52A41

Retrieve articles in all journals with MSC (2010): 47H09, 47H10, 53C22, 03F10, 47H05, 90C25, 52A41


Additional Information

David Ariza-Ruiz
Affiliation: Departamento Análisis Matemático, Fac. Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
Email: dariza@us.es

Laurenţiu Leuştean
Affiliation: Simion Stoilow Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-014700 Bucharest, Romania
Email: Laurentiu.Leustean@imar.ro

Genaro López-Acedo
Affiliation: Departamento Análisis Matemático, Fac. Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
Email: glopez@us.es

DOI: https://doi.org/10.1090/S0002-9947-2014-05968-0
Keywords: Firmly nonexpansive mappings, geodesic spaces, uniform convexity, Picard iterates, asymptotic regularity, $\Delta$-convergence, proof mining, effective bounds, minimization problems
Received by editor(s): March 10, 2012
Received by editor(s) in revised form: May 29, 2012, and September 22, 2012
Published electronically: March 26, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society