Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Descent of affine buildings - I. Large minimal angles


Authors: Bernhard Mühlherr, Koen Struyve and Hendrik Van Maldeghem
Journal: Trans. Amer. Math. Soc. 366 (2014), 4345-4366
MSC (2010): Primary 51E24, 20E42
DOI: https://doi.org/10.1090/S0002-9947-2014-05985-0
Published electronically: April 16, 2014
MathSciNet review: 3206462
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this two-part paper we prove an existence result for affine buildings arising from exceptional algebraic reductive groups. Combined with earlier results on classical groups, this gives a complete and positive answer to the conjecture concerning the existence of affine buildings arising from such groups defined over a (skew) field with a complete valuation, as proposed by Jacques Tits.

This first part lays the foundations for our approach and deals with the `large minimal angle' case.


References [Enhancements On Off] (What's this?)

  • [1] Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729 (2009g:20055)
  • [2] Andreas Balser and Alexander Lytchak, Centers of convex subsets of buildings, Ann. Global Anal. Geom. 28 (2005), no. 2, 201-209. MR 2180749 (2006g:53049), https://doi.org/10.1007/s10455-005-7277-4
  • [3] N. Bourbaki, Groupes et algèbres de Lie. Chap. 4-6, Actualités Scientifiques et Industrielles, No. 1337, Herman, Paris, 1968, 288 pp. MR 0240238
  • [4] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)
  • [5] F. Bruhat and J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-252.
  • [6] F. Bruhat and J. Tits, Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d'une donnée racidielle valuée, Inst. Hautes Études Sci. Publ.Math. 60 (1984), 5-184.
  • [7] Pierre-Emmanuel Caprace and Alexander Lytchak, At infinity of finite-dimensional CAT(0) spaces, Math. Ann. 346 (2010), no. 1, 1-21. MR 2558883 (2011d:53075), https://doi.org/10.1007/s00208-009-0381-1
  • [8] J. W. S. Cassels, Local fields, London Mathematical Society Student Texts, vol. 3, Cambridge University Press, Cambridge, 1986. MR 861410 (87i:11172)
  • [9] C. Charignon, Compactifications polygonales d'un immeuble affine, arXiv:0903.0502.
  • [10] Petra Hitzelberger, Linus Kramer, and Richard M. Weiss, Non-discrete Euclidean buildings for the Ree and Suzuki groups, Amer. J. Math. 132 (2010), no. 4, 1113-1152. MR 2663627 (2011h:20060), https://doi.org/10.1353/ajm.0.0133
  • [11] Tom De Medts, Yoav Segev, and Katrin Tent, Special Moufang sets, their root groups and their $ \mu $-maps, Proc. Lond. Math. Soc. (3) 96 (2008), no. 3, 767-791. MR 2407819 (2009d:20068), https://doi.org/10.1112/plms/pdm059
  • [12] Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115-197 (1998). MR 1608566 (98m:53068)
  • [13] Norbert Knarr, Projectivities of generalized polygons, Ars Combin. 25 (1988), no. B, 265-275. Eleventh British Combinatorial Conference (London, 1987). MR 942482 (89e:20008)
  • [14] B. Martin, J. Schillewaert, G. F. Steinke and K. Struyve, On metrically complete Bruhat-Tits buildings, Adv. Geom. 13 (2013), 497-510. MR 3100923
  • [15] John W. Morgan and Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), no. 3, 401-476. MR 769158 (86f:57011), https://doi.org/10.2307/1971082
  • [16] B. Mühlherr, Coxeter groups in Coxeter groups, Finite geometry and combinatorics (Deinze, 1992) London Math. Soc. Lecture Note Ser., vol. 191, Cambridge Univ. Press, Cambridge, 1993, pp. 277-287. MR 1256283 (94i:20074), https://doi.org/10.1017/CBO9780511526336.027
  • [17] Bernhard Mühlherr and Hendrik Van Maldeghem, Exceptional Moufang quadrangles of type $ F_4$, Canad. J. Math. 51 (1999), no. 2, 347-371. MR 1697148 (2000f:51007), https://doi.org/10.4153/CJM-1999-018-2
  • [18] Anne Parreau, Immeubles affines: construction par les normes et étude des isométries, Crystallographic groups and their generalizations (Kortrijk, 1999), Contemp. Math., vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 263-302 (French, with English summary). MR 1796138 (2001m:20042), https://doi.org/10.1090/conm/262/04180
  • [19] Anne Parreau, Sous-groupes elliptiques de groupes linéaires sur un corps valué, J. Lie Theory 13 (2003), no. 1, 271-278 (French, with English summary). MR 1958586 (2003m:20063)
  • [20] Gopal Prasad and Jiu-Kang Yu, On finite group actions on reductive groups and buildings, Invent. Math. 147 (2002), no. 3, 545-560. MR 1893005 (2003e:20036), https://doi.org/10.1007/s002220100182
  • [21] Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, U.E.R. Mathématique, Université Paris XI, Orsay, 1977 (French). Thèse de doctorat; Publications Mathématiques d'Orsay, No. 221-77.68. MR 0491992 (58 #11158)
  • [22] Petra N. Schwer and Koen Struyve, $ \Lambda $-buildings and base change functors, Geom. Dedicata 157 (2012), 291-317. MR 2893490, https://doi.org/10.1007/s10711-011-9611-2
  • [23] Jean-Pierre Serre, Complète réductibilité, Astérisque 299 (2005), Exp. No. 932, viii, 195-217 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167207 (2006d:20084)
  • [24] Ernest Shult and Arthur Yanushka, Near $ n$-gons and line systems, Geom. Dedicata 9 (1980), no. 1, 1-72. MR 566437 (82b:51018), https://doi.org/10.1007/BF00156473
  • [25] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998. MR 1642713 (99h:20075)
  • [26] Koen Struyve, (Non)-completeness of $ \mathbb{R}$-buildings and fixed point theorems, Groups Geom. Dyn. 5 (2011), no. 1, 177-188. MR 2763784 (2011m:51018), https://doi.org/10.4171/GGD/121
  • [27] J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 1966, pp. 33-62. MR 0224710 (37 #309)
  • [28] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin, 1974. MR 0470099 (57 #9866)
  • [29] Jacques Tits, Immeubles de type affine, Buildings and the geometry of diagrams (Como, 1984) Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 159-190 (French). MR 843391 (87h:20077), https://doi.org/10.1007/BFb0075514
  • [30] Jacques Tits and Richard M. Weiss, Moufang polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1938841 (2003m:51008)
  • [31] Hendrik van Maldeghem, Generalized polygons, Monographs in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 1998. MR 1725957 (2000k:51004)
  • [32] Richard M. Weiss, The structure of spherical buildings, Princeton University Press, Princeton, NJ, 2003. MR 2034361 (2005b:51027)
  • [33] Richard M. Weiss, The structure of affine buildings, Annals of Mathematics Studies, vol. 168, Princeton University Press, Princeton, NJ, 2009. MR 2468338 (2009m:51022)
  • [34] Richard M. Weiss, On the existence of certain affine buildings of type $ E_6$ and $ E_7$, J. Reine Angew. Math. 653 (2011), 135-147. MR 2794628 (2012g:51012), https://doi.org/10.1515/CRELLE.2011.022

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 51E24, 20E42

Retrieve articles in all journals with MSC (2010): 51E24, 20E42


Additional Information

Bernhard Mühlherr
Affiliation: Mathematics Institute, Universitat Giessen, 35392 Giessen, Germany

Koen Struyve
Affiliation: Department of Pure Mathematics, Ghent University, B-9000 Ghent, Belgium

Hendrik Van Maldeghem
Affiliation: Department of Pure Mathematics, Ghent University, B-9000 Ghent, Belgium

DOI: https://doi.org/10.1090/S0002-9947-2014-05985-0
Received by editor(s): January 19, 2012
Received by editor(s) in revised form: September 23, 2012, and October 15, 2012
Published electronically: April 16, 2014
Additional Notes: The second author was supported by the Fund for Scientific Research – Flanders (FWO - Vlaanderen)
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society