Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Quasifuchsian state surfaces


Authors: David Futer, Efstratia Kalfagianni and Jessica S. Purcell
Journal: Trans. Amer. Math. Soc. 366 (2014), 4323-4343
MSC (2010): Primary 57M50, 57M27, 57M25; Secondary 20H10
DOI: https://doi.org/10.1090/S0002-9947-2014-06182-5
Published electronically: April 22, 2014
MathSciNet review: 3206461
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues our study of essential state surfaces in link complements that satisfy a mild diagrammatic hypothesis (homogeneously adequate). For hyperbolic links, we show that the geometric type of these surfaces in the Thurston trichotomy is completely determined by a simple graph-theoretic criterion in terms of a certain spine of the surfaces. For links with $ A$- or $ B$-adequate diagrams, the geometric type of the surface is also completely determined by a coefficient of the colored Jones polynomial of the link.


References [Enhancements On Off] (What's this?)

  • [1] Colin Adams, Noncompact Fuchsian and quasi-Fuchsian surfaces in hyperbolic 3-manifolds, Algebr. Geom. Topol. 7 (2007), 565-582. MR 2308957 (2008d:57021), https://doi.org/10.2140/agt.2007.7.565
  • [2] Francis Bonahon, Bouts des variétés hyperboliques de dimension $ 3$, Ann. of Math. (2) 124 (1986), no. 1, 71-158 (French). MR 847953 (88c:57013), https://doi.org/10.2307/1971388
  • [3] R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3-92. MR 903850 (89e:57008)
  • [4] Jae Choon Cha and Charles Livingston, Knotinfo: Table of knot invariants, http://www.indiana.edu/˜ knotinfo, 2011.
  • [5] D. Cooper and D. D. Long, Some surface subgroups survive surgery, Geom. Topol. 5 (2001), 347-367 (electronic). MR 1825666 (2002g:57031), https://doi.org/10.2140/gt.2001.5.347
  • [6] P. R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989), no. 3, 535-552. MR 1002465 (90f:57001), https://doi.org/10.1112/jlms/s2-39.3.535
  • [7] Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus, The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008), no. 2, 384-399. MR 2389605 (2009d:57020), https://doi.org/10.1016/j.jctb.2007.08.003
  • [8] Oliver T. Dasbach and Xiao-Song Lin, On the head and the tail of the colored Jones polynomial, Compos. Math. 142 (2006), no. 5, 1332-1342. MR 2264669 (2007g:57018), https://doi.org/10.1112/S0010437X06002296
  • [9] Sérgio R. Fenley, Quasi-Fuchsian Seifert surfaces, Math. Z. 228 (1998), no. 2, 221-227. MR 1630563 (99c:57037), https://doi.org/10.1007/PL00004607
  • [10] Elizabeth Finkelstein and Yoav Moriah, Tubed incompressible surfaces in knot and link complements, Topology Appl. 96 (1999), no. 2, 153-170. MR 1702308 (2001b:57013), https://doi.org/10.1016/S0166-8641(98)00043-1
  • [11] Elizabeth Finkelstein and Yoav Moriah, Closed incompressible surfaces in knot complements, Trans. Amer. Math. Soc. 352 (2000), no. 2, 655-677. MR 1487613 (2000c:57007), https://doi.org/10.1090/S0002-9947-99-02233-3
  • [12] David Futer, Fiber detection for state surfaces, Algebr. Geom. Topol. 13 (2013), no. 5, 2799-2807, DOI 10.2140/agt.2013.13.2799. MR 3116303
  • [13] David Futer, Efstratia Kalfagianni, and Jessica Purcell, Guts of surfaces and the colored Jones polynomial, Lecture Notes in Mathematics, vol. 2069, Springer, Heidelberg, 2013. MR 3024600
  • [14] David Futer, Efstratia Kalfagianni, and Jessica Purcell, Jones polynomials, volume, and essential knot surfaces: a survey, Proceedings of Knots in Poland III, Banach Center Publications 100 (2014), Issue 1, 51-77.
  • [15] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245-375 (German). MR 0141106 (25 #4519a)
  • [16] William Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR 565450 (81k:57009)
  • [17] Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407. MR 899057 (88f:57006), https://doi.org/10.1016/0040-9383(87)90009-7
  • [18] Marc Lackenby, The volume of hyperbolic alternating link complements, Proc. London Math. Soc. (3) 88 (2004), no. 1, 204-224. With an appendix by Ian Agol and Dylan Thurston. MR 2018964 (2004i:57008), https://doi.org/10.1112/S0024611503014291
  • [19] W. B. R. Lickorish and M. B. Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), no. 4, 527-539. MR 966948 (90a:57010), https://doi.org/10.1007/BF02566777
  • [20] Joseph D. Masters and Xingru Zhang, Closed quasi-Fuchsian surfaces in hyperbolic knot complements, Geom. Topol. 12 (2008), no. 4, 2095-2171. MR 2431017 (2009g:57029), https://doi.org/10.2140/gt.2008.12.2095
  • [21] William Menasco and Alan W. Reid, Totally geodesic surfaces in hyperbolic link complements, Topology '90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 215-226. MR 1184413 (94g:57016)
  • [22] Makoto Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011), no. 3, 391-404. MR 2900614, https://doi.org/10.1017/S1446788712000055
  • [23] Józef H. Przytycki, From Goeritz matrices to quasi-alternating links, The mathematics of knots, Contrib. Math. Comput. Sci., vol. 1, Springer, Heidelberg, 2011, pp. 257-316. MR 2777853 (2012e:57014)
  • [24] Morwen Thistlethwaite and Anastasiia Tsvietkova, An alternative approach to hyperbolic structures on link complements, Algebr. Geom. Topol. 14 (2014), no. 3, 1307-1337, DOI 10.2140/agt.2014.14.1307. MR 3190595
  • [25] Morwen B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), no. 2, 285-296. MR 948102 (89g:57009), https://doi.org/10.1007/BF01394334
  • [26] William P. Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Notes, 1979.
  • [27] Yukihiro Tsutsumi, Hyperbolic knots spanning accidental Seifert surfaces of arbitrarily high genus, Math. Z. 246 (2004), no. 1-2, 167-175. MR 2031451 (2005b:57044), https://doi.org/10.1007/s00209-003-0593-0
  • [28] Anastasiia Tsvietkova, Hyperbolic structures from link diagrams, Ph.D. thesis, University of Tennessee, 2012. MR 3121975
  • [29] Daniel T. Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006), no. 3, 421-463. MR 2218750 (2007a:57010), https://doi.org/10.1016/j.top.2005.06.004
  • [30] Ying-Qing Wu, Incompressible surfaces in link complements, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3417-3423 (electronic). MR 1845021 (2002g:57046), https://doi.org/10.1090/S0002-9939-01-05938-X

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M50, 57M27, 57M25, 20H10

Retrieve articles in all journals with MSC (2010): 57M50, 57M27, 57M25, 20H10


Additional Information

David Futer
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Email: dfuter@temple.edu

Efstratia Kalfagianni
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: kalfagia@math.msu.edu

Jessica S. Purcell
Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email: jpurcell@math.byu.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06182-5
Received by editor(s): October 4, 2012
Published electronically: April 22, 2014
Additional Notes: The first author was supported in part by NSF grant DMS–1007221.
The second author was supported in part by NSF grant DMS–1105843.
The third author was supported in part by NSF grant DMS–1007437 and a Sloan Research Fellowship.
Article copyright: © Copyright 2014 by the authors

American Mathematical Society