Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Characterization of closed ideals with bounded approximate identities in commutative Banach algebras, complemented subspaces of the group von Neumann algebras and applications


Authors: Anthony To-Ming Lau and Ali Ülger
Journal: Trans. Amer. Math. Soc. 366 (2014), 4151-4171
MSC (2010): Primary 46H20, 43A25, 43A46; Secondary 43A22
DOI: https://doi.org/10.1090/S0002-9947-2014-06336-8
Published electronically: April 7, 2014
MathSciNet review: 3206455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a commutative Banach algebra with a BAI (=bounded approximate identity). We equip $ A^{\ast \ast }$ with the (first) Arens multiplication. To each idempotent element $ u$ of $ A^{\ast \ast }$ we associate the closed ideal $ I_{u}=\{a\in A:au=0\}$ in $ A$. In this paper we present a characterization of the closed ideals of $ A$ with BAI's in terms of idempotent elements of $ A^{\ast \ast }$. The main results are: a) A closed ideal $ I$ of $ A$ has a BAI iff there is an idempotent $ u\in A^{\ast \ast }$ such that $ I=I_{u}$ and the subalgebra $ Au$ is norm closed in $ A^{\ast \ast }$. b) For any closed ideal $ I$ of $ A$ with a BAI, the quotient algebra $ A/I$ is isomorphic to a subalgebra of $ A^{\ast \ast }$. We also show that a weak$ ^{\ast }$ closed invariant subspace $ X$ of the group von Neumann algebra $ VN(G)$ of an amenable group $ G$ is naturally complemented in $ VN(G)$ iff the spectrum of $ X$ belongs to the closed coset ring $ \Re _{c}(G_{d})$ of $ G_{d}$, the discrete version of $ G$. This paper contains several applications of these results.


References [Enhancements On Off] (What's this?)

  • [1] D. Alspach, A. Matheson, and J. Rosenblatt, Projections onto translation-invariant subspaces of $ L_1(G)$, J. Funct. Anal. 59 (1984), no. 2, 254-292. MR 766491 (86h:43002), https://doi.org/10.1016/0022-1236(84)90074-0
  • [2] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726 (2002e:46001)
  • [3] A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970), 219-228. MR 0412735 (54 #856)
  • [4] Pierre Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236 (French). MR 0228628 (37 #4208)
  • [5] Brian Forrest, Amenability and bounded approximate identities in ideals of $ A(G)$, Illinois J. Math. 34 (1990), no. 1, 1-25. MR 1031879 (92e:43003)
  • [6] Brian Forrest, Projective operator spaces, almost periodicity and completely complemented ideals in the Fourier algebra, Rocky Mountain J. Math. 41 (2011), no. 1, 155-176. MR 2845938, https://doi.org/10.1216/RMJ-2011-41-1-155
  • [7] Brian Forrest, Amenability and ideals in $ A(G)$, J. Austral. Math. Soc. Ser. A 53 (1992), no. 2, 143-155. MR 1175708 (93i:43002)
  • [8] Brian E. Forrest and Volker Runde, Amenability and weak amenability of the Fourier algebra, Math. Z. 250 (2005), no. 4, 731-744. MR 2180372 (2007k:43005), https://doi.org/10.1007/s00209-005-0772-2
  • [9] B. Forrest, E. Kaniuth, A. T. Lau, and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003), no. 1, 286-304. MR 1996874 (2004e:43002), https://doi.org/10.1016/S0022-1236(02)00121-0
  • [10] A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West. MR 1093462 (92d:46178)
  • [11] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York, 1970. MR 0262773 (41 #7378)
  • [12] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall Inc., Englewood Cliffs, N. J., 1962. MR 0133008 (24 #A2844)
  • [13] B. Host, Le théorème des idempotents dans $ B(G)$, Bull. Soc. Math. France 114 (1986), no. 2, 215-223 (French, with English summary). MR 860817 (88b:43003)
  • [14] John E. Gilbert, On projections of $ L^{\infty }(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. (3) 19 (1969), 69-88. MR 0244705 (39 #6019)
  • [15] I. Glicksberg and I. Wik, Multipliers of quotients of $ L_{1}$, Pacific J. Math 38 (1971), 619-624. MR 0306813 (46 #5935)
  • [16] Gilles Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), no. 3, 301-331. MR 941245 (89m:43011), https://doi.org/10.1007/BF02772575
  • [17] Gilles Godefroy, Sous-espaces bien disposés de $ L^{1}$-applications, Trans. Amer. Math. Soc. 286 (1984), no. 1, 227-249 (French, with English summary). MR 756037 (86h:46033), https://doi.org/10.2307/1999403
  • [18] Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York, 1969. MR 0251549 (40 #4776)
  • [19] Jyunji Inoue and Sin-Ei Takahasi, Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math. (Szeged) 66 (2000), no. 1-2, 257-271. MR 1768865 (2001i:43004)
  • [20] Charles A. Jones and Charles D. Lahr, Weak and norm approximate identities are different, Pacific J. Math. 72 (1977), no. 1, 99-104. MR 0447972 (56 #6282)
  • [21] Eberhard Kaniuth, A course in commutative Banach algebras, Graduate Texts in Mathematics, vol. 246, Springer, New York, 2009. MR 2458901 (2010d:46064)
  • [22] E. Kaniuth, A. T. Lau, and A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. Lond. Math. Soc. (2) 81 (2010), no. 1, 255-275. MR 2580464 (2011c:46107), https://doi.org/10.1112/jlms/jdp068
  • [23] Andrew G. Kepert, The range of group algebra homomorphisms, Canad. Math. Bull. 40 (1997), no. 2, 183-192. MR 1451272 (98m:43005), https://doi.org/10.4153/CMB-1997-022-6
  • [24] Anthony To Ming Lau, Invariantly complemented subspaces of $ L_{\infty }(G)$ and amenable locally compact groups, Illinois J. Math. 26 (1982), no. 2, 226-235. MR 650390 (83g:43002)
  • [25] Anthony To Ming Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161-175. MR 736276 (85k:43007)
  • [26] Anthony To Ming Lau and Viktor Losert, Weak$ ^\ast $-closed complemented invariant subspaces of $ L_\infty (G)$ and amenable locally compact groups, Pacific J. Math. 123 (1986), no. 1, 149-159. MR 834144 (87g:43001)
  • [27] Ronald Larsen, An introduction to the theory of multipliers, Springer-Verlag, New York, 1971. Die Grundlehren der mathematischen Wissenschaften, Band 175. MR 0435738 (55 #8695)
  • [28] Horst Leptin, Sur l'algèbre de Fourier d'un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180-A1182 (French). MR 0239002 (39 #362)
  • [29] Gerald M. Leibowitz, Lectures on complex function algebras, Scott, Foresman and Co., Glenview, Ill., 1970. MR 0428042 (55 #1072)
  • [30] Teng-Sun Liu, Arnoud van Rooij, and Ju Kwei Wang, Projections and approximate identities for ideals in group algebras, Trans. Amer. Math. Soc. 175 (1973), 469-482. MR 0318781 (47 #7327)
  • [31] Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261 (90e:43001)
  • [32] Haskell P. Rosenthal, Projections onto translation-invariant subspaces of $ L^{p}(G)$, Mem. Amer. Math. Soc. No. 63 (1966), 84. MR 0211198 (35 #2080)
  • [33] P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291. MR 0304553 (46 #3688)
  • [34] Walter Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429-432. MR 0138012 (25 #1460)
  • [35] Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. MR 1157815 (92k:46001)
  • [36] Walter Rudin, Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons Inc., New York, 1990. Reprint of the 1962 original; a Wiley-Interscience Publication. MR 1038803 (91b:43002)
  • [37] Volker Runde, Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893 (2003h:46001)
  • [38] Bert M. Schreiber, On the coset ring and strong Ditkin sets, Pacific J. Math. 32 (1970), 805-812. MR 0259502 (41 #4140)
  • [39] Peter J. Wood, Complemented ideals in the Fourier algebra of a locally compact group, Proc. Amer. Math. Soc. 128 (2000), no. 2, 445-451. MR 1616589 (2000c:43004), https://doi.org/10.1090/S0002-9939-99-04989-8

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46H20, 43A25, 43A46, 43A22

Retrieve articles in all journals with MSC (2010): 46H20, 43A25, 43A46, 43A22


Additional Information

Anthony To-Ming Lau
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: tlau@math.ualberta.ca

Ali Ülger
Affiliation: Department of Mathematics, Koc University, 34450 Sariyer, Istanbul, Turkey
Email: aulger@ku.edu.tr

DOI: https://doi.org/10.1090/S0002-9947-2014-06336-8
Keywords: Commutative Banach algebras, invariant complementation, idempotent, Fourier algebra, Fourier-Stieltjes algebra, group von Neumann algebra, closed ideal, coset ring, bounded approximate identity, multiplier, Arens product
Received by editor(s): August 17, 2012
Published electronically: April 7, 2014
Additional Notes: The first author was supported by NSERC grant MS 100
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society