Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$


Authors: Manassés de Souza and João Marcos do Ó
Journal: Trans. Amer. Math. Soc. 366 (2014), 4513-4549
MSC (2010): Primary 35J20; Secondary 35J60
DOI: https://doi.org/10.1090/S0002-9947-2014-05811-X
Published electronically: May 7, 2014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we establish a sharp Trudinger-Moser type inequality for a class of Schrödinger operators in $ \mathbb{R}^2$. We obtain a result related to the compactness of the embedding of a subspace of $ W^{1,2}(\mathbb{R}^2)$ into the Orlicz space $ L_{\phi }(\mathbb{R}^2)$ determined by $ \phi (t)=e^{\beta t^{2}}-1$. Our result is similar to one obtained by Adimurthi and Druet for smooth bounded domains in $ \mathbb{R}^2$, which is closely related to a compactness result proved by Lions. Furthermore, similarly to what has been done by Carleson and Chang, we prove the existence of an extremal function for this Trudinger-Moser inequality by performing a blow-up analysis. Trudinger-Moser type inequalities have a wide variety of applications to the study of nonlinear elliptic partial differential equations involving the limiting case of Sobolev inequalities and have received considerable attention in recent years.


References [Enhancements On Off] (What's this?)

  • [1] Shinji Adachi and Kazunaga Tanaka, Trudinger type inequalities in $ \mathbf {R}^N$ and their best exponents, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051-2057. MR 1646323 (2000m:46069), https://doi.org/10.1090/S0002-9939-99-05180-1
  • [2] Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Partial Differential Equations 29 (2004), no. 1-2, 295-322. MR 2038154 (2005a:46064), https://doi.org/10.1081/PDE-120028854
  • [3] Adimurthi and Michael Struwe, Global compactness properties of semilinear elliptic equations with critical exponential growth, J. Funct. Anal. 175 (2000), no. 1, 125-167. MR 1774854 (2001g:35063), https://doi.org/10.1006/jfan.2000.3602
  • [4] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. MR 695535 (84h:35054a), https://doi.org/10.1007/BF00250555
  • [5] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ {\bf R}^2$, Comm. Partial Differential Equations 17 (1992), no. 3-4, 407-435. MR 1163431 (93f:35076), https://doi.org/10.1080/03605309208820848
  • [6] Lennart Carleson and Sun-Yung A. Chang, On the existence of an extremal function for an inequality of J.Moser, Bull. Sci. Math. (2) 110 (1986), no. 2, 113-127 (English, with French summary). MR 878016 (88f:46070)
  • [7] Wen Xiong Chen and Congming Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615-622. MR 1121147 (93e:35009), https://doi.org/10.1215/S0012-7094-91-06325-8
  • [8] David G. Costa, On a class of elliptic systems in $ \mathbf {R}^N$, Electron. J. Differential Equations (1994), No. 07, approx. 14 pp. (electronic). MR 1292598 (95e:35065)
  • [9] Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), no. 2, 135-152. MR 1865413 (2002j:35104), https://doi.org/10.1002/cpa.10015
  • [10] Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf, Elliptic equations and systems with critical Trudinger-Moser nonlinearities, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 455-476. MR 2772124 (2011m:35083), https://doi.org/10.3934/dcds.2011.30.455
  • [11] João Marcos B. do Ó, $ N$-Laplacian equations in $ \mathbf {R}^N$ with critical growth, Abstr. Appl. Anal. 2 (1997), no. 3-4, 301-315. MR 1704875 (2001h:35045), https://doi.org/10.1155/S1085337597000419
  • [12] João Marcos do Ó, Everaldo Medeiros, and Uberlandio Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl. 345 (2008), no. 1, 286-304. MR 2422651 (2009m:35161), https://doi.org/10.1016/j.jmaa.2008.03.074
  • [13] João Marcos do Ó and Yunyan Yang, A quasi-linear elliptic equation with critical growth on compact Riemannian manifold without boundary, Ann. Global Anal. Geom. 38 (2010), no. 3, 317-334. MR 2721666 (2011k:58027), https://doi.org/10.1007/s10455-010-9218-0
  • [14] Martin Flucher, Extremal functions for the Trudinger-Moser inequality in $ 2$ dimensions, Comment. Math. Helv. 67 (1992), no. 3, 471-497. MR 1171306 (93k:58073), https://doi.org/10.1007/BF02566514
  • [15] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364 (2001k:35004)
  • [16] J. A. Hempel, G. R. Morris, and N. S. Trudinger, On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Austral. Math. Soc. 3 (1970), 369-373. MR 0280998 (43 #6717)
  • [17] S. Kesavan, Symmetrization and applications, Series in Analysis, vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. MR 2238193 (2008a:35005)
  • [18] Satyanad Kichenassamy and Laurent Véron, Singular solutions of the $ p$-Laplace equation, Math. Ann. 275 (1986), no. 4, 599-615. MR 859333 (87j:35096), https://doi.org/10.1007/BF01459140
  • [19] Yuxiang Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations 14 (2001), no. 2, 163-192. MR 1838044 (2002h:58033)
  • [20] Yuxiang Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A 48 (2005), no. 5, 618-648. MR 2158479 (2007a:53081), https://doi.org/10.1360/04ys0050
  • [21] Yuxiang Li and Bernhard Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^n$, Indiana Univ. Math. J. 57 (2008), no. 1, 451-480. MR 2400264 (2009h:46071), https://doi.org/10.1512/iumj.2008.57.3137
  • [22] Kai-Ching Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2663-2671. MR 1333394 (96i:58043), https://doi.org/10.1090/S0002-9947-96-01541-3
  • [23] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201. MR 834360 (87c:49007), https://doi.org/10.4171/RMI/6
  • [24] Guozhen Lu and Yunyan Yang, Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $ L^p$ norm in two dimension, Discrete Contin. Dyn. Syst. 25 (2009), no. 3, 963-979. MR 2533985 (2010m:35011), https://doi.org/10.3934/dcds.2009.25.963
  • [25] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092. MR 0301504 (46 #662)
  • [26] Ratikanta Panda, On semilinear Neumann problems with critical growth for the $ n$-Laplacian, Nonlinear Anal. 26 (1996), no. 8, 1347-1366. MR 1377667 (97d:35079), https://doi.org/10.1016/0362-546X(94)00360-T
  • [27] S. I. Pohozaev, The Sobolev embedding in the case $ pl = n$, Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964-1965. Mathematics Section, Moscov. Energet. Inst. (1965), 158-170.
  • [28] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton Univ. Press, Princeton, 1951.MR 0043486
  • [29] Paul H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. MR 1162728 (93h:35194), https://doi.org/10.1007/BF00946631
  • [30] Bernhard Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal. 219 (2005), no. 2, 340-367. MR 2109256 (2005k:46082), https://doi.org/10.1016/j.jfa.2004.06.013
  • [31] Yuji Sano, The best constant of the Moser-Trudinger inequality on $ S^2$, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3477-3482 (electronic). MR 2055742 (2005e:53052), https://doi.org/10.1090/S0002-9947-03-03483-4
  • [32] Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. MR 0454365 (56 #12616)
  • [33] Michael Struwe, Critical points of embeddings of $ H^{1,n}_0$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 425-464 (English, with French summary). MR 970849 (90c:35084)
  • [34] Michael Struwe, Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 4, 329-388. MR 1796963 (2001h:35070), https://doi.org/10.1007/s100970000023
  • [35] Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. MR 0216286 (35 #7121)
  • [36] V. I. Judovič, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961), 805-808 (Russian). MR 0140822 (25 #4236)
  • [37] Yunyan Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal. 239 (2006), no. 1, 100-126. MR 2258218 (2007e:35109), https://doi.org/10.1016/j.jfa.2006.06.002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35J20, 35J60

Retrieve articles in all journals with MSC (2010): 35J20, 35J60


Additional Information

Manassés de Souza
Affiliation: Departamento de Matemática, Universidade Federal de Pernambuco, 50740-540 Recife, PE, Brazil
Email: mxs@dmat.ufpe.br

João Marcos do Ó
Affiliation: Departamento de Matemática, Universidade Federal de Paraíba, 58051-900 João Pessoa, PB, Brazil
Email: jmbo@pq.cnpq.br

DOI: https://doi.org/10.1090/S0002-9947-2014-05811-X
Keywords: Trudinger-Moser inequality, blow-up analysis, extremal function
Received by editor(s): June 22, 2011
Received by editor(s) in revised form: February 16, 2012
Published electronically: May 7, 2014
Additional Notes: The authors’ research was partially supported by the National Institute of Science and Technology of Mathematics INCT-Mat, CAPES and CNPq grants 307400/2009-3, 620108/2008-8 and 142002/2006-2.
The second author was the corresponding author
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society