Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex


Authors: Yuly Billig and Vyacheslav Futorny
Journal: Trans. Amer. Math. Soc. 366 (2014), 4697-4731
MSC (2010): Primary 17B66, 17B67; Secondary 17B69
DOI: https://doi.org/10.1090/S0002-9947-2014-05959-X
Published electronically: April 25, 2014
MathSciNet review: 3217697
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The goal of this paper is to study the representation theory of a classical infinite-dimensional Lie algebra - the Lie algebra $ {\rm Vect}{\mathbb{T}}^N$ of vector fields on an $ N$-dimensional torus for $ N > 1$. The case $ N=1$ gives a famous Virasoro algebra (or its centerless version - the Witt algebra). The algebra $ {\rm Vect}{\mathbb{T}}^N$ has a natural class of tensor modules parametrized by finite-dimensional modules of $ gl_N$. Tensor modules can be used in turn to construct bounded irreducible modules for $ {\rm Vect}{\mathbb{T}}^{N+1}$ (induced from $ {\rm Vect}{\mathbb{T}}^N$), which are the focus of our study. We solve two problems regarding these bounded modules: we construct their free field realizations and determine their characters. To solve these problems we analyze the structure of the irreducible $ \Omega ^1 \left ( \mathbb{T}^{N+1} \right ) / d \Omega ^0 \left ( \mathbb{T}^{N+1} \right ) \rtimes {\rm Vect}{\mathbb{T}}^{N+1}$-modules constructed in a paper by the first author. These modules remain irreducible when restricted to the subalgebra $ {\rm Vect}{\mathbb{T}}^{N+1}$, unless they belong to the chiral de Rham complex, introduced by Malikov-Schechtman-Vaintrob (1999).


References [Enhancements On Off] (What's this?)

  • [1] Stephen Berman and Yuly Billig, Irreducible representations for toroidal Lie algebras, J. Algebra 221 (1999), no. 1, 188-231. MR 1722910 (2000k:17004), https://doi.org/10.1006/jabr.1999.7961
  • [2] Yuly Billig, A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not. , posted on (2006), Art. ID 68395, 46. MR 2272091 (2007h:17030), https://doi.org/10.1155/IMRN/2006/68395
  • [3] Yuly Billig, Alexander Molev, and Ruibin Zhang, Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus, Adv. Math. 218 (2008), no. 6, 1972-2004. MR 2431666 (2009e:17042), https://doi.org/10.1016/j.aim.2008.03.026
  • [4] Yuly Billig and Kaiming Zhao, Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004), no. 1-2, 23-42. MR 2048305 (2005a:17021), https://doi.org/10.1016/j.jpaa.2003.12.004
  • [5] Chongying Dong, Haisheng Li, and Geoffrey Mason, Vertex Lie algebras, vertex Poisson algebras and vertex algebras, Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000) Contemp. Math., vol. 297, Amer. Math. Soc., Providence, RI, 2002, pp. 69-96. MR 1919813 (2003h:17035), https://doi.org/10.1090/conm/297/05093
  • [6] S. Eswara Rao, Irreducible representations of the Lie-algebra of the diffeomorphisms of a $ d$-dimensional torus, J. Algebra 182 (1996), no. 2, 401-421. MR 1391590 (97f:17007), https://doi.org/10.1006/jabr.1996.0177
  • [7] S. Eswara Rao, Partial classification of modules for Lie algebra of diffeomorphisms of $ d$-dimensional torus, J. Math. Phys. 45 (2004), no. 8, 3322-3333. MR 2077512 (2005d:17028), https://doi.org/10.1063/1.1769104
  • [8] Edward Frenkel, Victor Kac, Andrey Radul, and Weiqiang Wang, $ \mathcal {W}_{1+\infty }$ and $ \mathcal {W}(\mathfrak{g}\mathfrak{l}_N)$ with central charge $ N$, Comm. Math. Phys. 170 (1995), no. 2, 337-357. MR 1334399 (96i:17024)
  • [9] I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations, Lie algebras and related topics (New Brunswick, N.J., 1981) Lecture Notes in Math., vol. 933, Springer, Berlin-New York, 1982, pp. 71-110. MR 675108 (84f:17006)
  • [10] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494 (94a:17007), https://doi.org/10.1090/memo/0494
  • [11] V. M. Futorny, Irreducible non-dense $ A^{(1)}_1$-modules, Pacific J. Math. 172 (1996), no. 1, 83-99. MR 1379287 (96m:17042)
  • [12] Victor Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR 1651389 (99f:17033)
  • [13] V. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson, Realization of the basic representations of the Euclidean Lie algebras, Adv. in Math. 42 (1981), no. 1, 83-112. MR 633784 (83a:17016), https://doi.org/10.1016/0001-8708(81)90053-0
  • [14] Christian Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, Proceedings of the Luminy conference on algebraic $ K$-theory (Luminy, 1983), 1984, pp. 265-275. MR 772062 (86h:17013), https://doi.org/10.1016/0022-4049(84)90040-9
  • [15] Fons ten Kroode and Johan van de Leur, Bosonic and fermionic realizations of the affine algebra $ \widehat {\rm gl}_n$, Comm. Math. Phys. 137 (1991), no. 1, 67-107. MR 1099256 (92f:17030)
  • [16] James Lepowsky and Robert Lee Wilson, Construction of the affine Lie algebra $ A_{1}^{{}}(1)$, Comm. Math. Phys. 62 (1978), no. 1, 43-53. MR 0573075 (58 #28089)
  • [17] Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143-195. MR 1387738 (97d:17016), https://doi.org/10.1016/0022-4049(95)00079-8
  • [18] Fyodor Malikov and Vadim Schechtman, Chiral de Rham complex. II, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 149-188. MR 1729362 (2000j:17035b)
  • [19] Fyodor Malikov and Vadim Schechtman, Chiral Poincaré duality, Math. Res. Lett. 6 (1999), no. 5-6, 533-546. MR 1739212 (2000m:14019), https://doi.org/10.4310/MRL.1999.v6.n5.a6
  • [20] Fyodor Malikov, Vadim Schechtman, and Arkady Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999), no. 2, 439-473. MR 1704283 (2000j:17035a), https://doi.org/10.1007/s002200050653
  • [21] Olivier Mathieu, Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math. 107 (1992), no. 2, 225-234. MR 1144422 (93d:17034), https://doi.org/10.1007/BF01231888
  • [22] Olivier Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 537-592 (English, with English and French summaries). MR 1775361 (2001h:17017)
  • [23] Volodymyr Mazorchuk and Kaiming Zhao, Supports of weight modules over Witt algebras, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 1, 155-170. MR 2773444 (2012d:17021), https://doi.org/10.1017/S0308210509000912
  • [24] Robert V. Moody and Arturo Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1323858 (96d:17025)
  • [25] Mirko Primc, Vertex algebras generated by Lie algebras, J. Pure Appl. Algebra 135 (1999), no. 3, 253-293. MR 1670692 (2000c:17046), https://doi.org/10.1016/S0022-4049(97)00144-8
  • [26] Michael Roitman, On free conformal and vertex algebras, J. Algebra 217 (1999), no. 2, 496-527. MR 1700512 (2001i:17036), https://doi.org/10.1006/jabr.1998.7834
  • [27] A. N. Rudakov, Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 835-866 (Russian). MR 0360732 (50 #13179)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B66, 17B67, 17B69

Retrieve articles in all journals with MSC (2010): 17B66, 17B67, 17B69


Additional Information

Yuly Billig
Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
Email: billig@math.carleton.ca

Vyacheslav Futorny
Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 05315-970 Brasil
Email: futorny@ime.usp.br

DOI: https://doi.org/10.1090/S0002-9947-2014-05959-X
Received by editor(s): August 31, 2011
Received by editor(s) in revised form: September 11, 2012
Published electronically: April 25, 2014
Additional Notes: The first author was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada
The second author was supported in part by the CNPq grant (301743/2007-0) and by the Fapesp grant (2010/50347-9)
Dedicated: Dedicated to Yuri Alexandrovich Bahturin
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society