Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Affinization of category $ \mathcal{O}$ for quantum groups


Authors: E. Mukhin and C. A. S. Young
Journal: Trans. Amer. Math. Soc. 366 (2014), 4815-4847
MSC (2010): Primary 17B37; Secondary 81R50
DOI: https://doi.org/10.1090/S0002-9947-2014-06039-X
Published electronically: May 5, 2014
MathSciNet review: 3217701
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{g}$ be a simple Lie algebra. We consider the category $ \hat {\mathcal {O}}$ of those modules over the affine quantum group $ U_q(\widehat {\mathfrak{g}})$ whose $ U_q(\mathfrak{g})$-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category $ \hat {\mathcal {O}}$. In particular, we define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.


References [Enhancements On Off] (What's this?)

  • [Cha95] Vyjayanthi Chari, Minimal affinizations of representations of quantum groups: the rank $ 2$ case, Publ. Res. Inst. Math. Sci. 31 (1995), no. 5, 873-911. MR 1367675 (96m:17021), https://doi.org/10.2977/prims/1195163722
  • [CM07] Vyjayanthi Chari and Adriano Moura, Kirillov-Reshetikhin modules associated to $ G_2$, Lie algebras, vertex operator algebras and their applications, Contemp. Math., vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 41-59. MR 2372556 (2009i:17036), https://doi.org/10.1090/conm/442/08519
  • [CP91] Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261-283. MR 1137064 (93d:17017)
  • [CP94a] Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. MR 1300632 (95j:17010)
  • [CP94b] Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59-78. MR 1357195 (96j:17009)
  • [CP95] Vyjayanthi Chari and Andrew Pressley, Minimal affinizations of representations of quantum groups: the nonsimply-laced case, Lett. Math. Phys. 35 (1995), no. 2, 99-114. MR 1347873 (96g:17012), https://doi.org/10.1007/BF00750760
  • [CP96a] Vyjayanthi Chari and Andrew Pressley, Minimal affinizations of representations of quantum groups: the irregular case, Lett. Math. Phys. 36 (1996), no. 3, 247-266. MR 1376937 (96m:17022), https://doi.org/10.1007/BF00943278
  • [CP96b] Vyjayanthi Chari and Andrew Pressley, Minimal affinizations of representations of quantum groups: the simply laced case, J. Algebra 184 (1996), no. 1, 1-30. MR 1402568 (97f:17012), https://doi.org/10.1006/jabr.1996.0247
  • [Dam98] Ilaria Damiani, La $ R$-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 4, 493-523 (French, with English and French summaries). MR 1634087 (99g:17027), https://doi.org/10.1016/S0012-9593(98)80104-3
  • [Dri87] V. G. Drinfeld, Quantum groups, (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798-820. MR 934283 (89f:17017)
  • [Dri88] V. G. Drinfeld, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13-17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212-216. MR 914215 (88j:17020)
  • [FM01] Edward Frenkel and Evgeny Mukhin, Combinatorics of $ q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23-57. MR 1810773 (2002c:17023), https://doi.org/10.1007/s002200000323
  • [FR98] Edward Frenkel and Nicolai Reshetikhin, The $ q$-characters of representations of quantum affine algebras and deformations of $ \mathcal {W}$-algebras, (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163-205. MR 1745260 (2002f:17022), https://doi.org/10.1090/conm/248/03823
  • [HKOTY99] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, Remarks on fermionic formula, (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243-291. MR 1745263 (2001m:81129), https://doi.org/10.1090/conm/248/03826
  • [Her04] David Hernandez, Representations of quantum affinizations and fusion product, Transform. Groups 10 (2005), no. 2, 163-200. MR 2195598 (2006k:17025), https://doi.org/10.1007/s00031-005-1005-9
  • [Her07] David Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys. 276 (2007), no. 1, 221-259. MR 2342293 (2008h:17014), https://doi.org/10.1007/s00220-007-0332-1
  • [HJ11] D. Hernandez, M. Jimbo, Asymptotic representations and Drinfeld rational fractions, Compos. Math. 148 (2012), no. 5, 1593-1623.MR 2982441
  • [Jim85] Michio Jimbo, A $ q$-difference analogue of $ U({\mathfrak{g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69. MR 797001 (86k:17008), https://doi.org/10.1007/BF00704588
  • [Kni95] Harold Knight, Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra 174 (1995), no. 1, 187-196. MR 1332866 (96g:17015), https://doi.org/10.1006/jabr.1995.1123
  • [Mou10] Adriano Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), no. 2, 359-397. MR 2587436 (2011b:17036), https://doi.org/10.2140/pjm.2010.244.359
  • [MY11] E. Mukhin and C. A. S. Young, Path description of type B $ q$-characters, Adv. Math. 231 (2012), no. 2, 1119-1150. MR 2955205, https://doi.org/10.1016/j.aim.2012.06.012
  • [MY12] E. Mukhin and C. A. S. Young, Extended T-systems, Selecta Math. (N.S.) 18 (2012), no. 3, 591-631. MR 2960028, https://doi.org/10.1007/s00029-011-0083-x
  • [Ver] J. A. M. Vermaseren, New features of FORM, arXiv:math-ph/0010025.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B37, 81R50

Retrieve articles in all journals with MSC (2010): 17B37, 81R50


Additional Information

E. Mukhin
Affiliation: Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, LD 270, Indianapolis, Indiana 46202
Email: mukhin@math.iupui.edu

C. A. S. Young
Affiliation: School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
Email: charlesyoung@cantab.net

DOI: https://doi.org/10.1090/S0002-9947-2014-06039-X
Received by editor(s): April 24, 2012
Received by editor(s) in revised form: November 9, 2012, and November 23, 2012
Published electronically: May 5, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society