Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Laws of large numbers without additivity


Author: Pedro Terán
Journal: Trans. Amer. Math. Soc. 366 (2014), 5431-5451
MSC (2010): Primary 60F15; Secondary 28A12, 60A05
DOI: https://doi.org/10.1090/S0002-9947-2014-06053-4
Published electronically: June 6, 2014
MathSciNet review: 3240929
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The law of large numbers is studied under a weakening of the axiomatic properties of a probability measure. Averages do not generally converge to a point, but they are asymptotically confined in a limit set for any random variable satisfying a natural `finite first moment' condition. It is also shown that their behaviour can depart strikingly from the intuitions developed in the additive case.


References [Enhancements On Off] (What's this?)

  • [1] Marianne Akian, Jean-Pierre Quadrat, and Michel Viot, Duality between probability and optimization, Idempotency (Bristol, 1994) Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, pp. 331-353. MR 1608359, https://doi.org/10.1017/CBO9780511662508.020
  • [2] David R. Adams, Choquet integrals in potential theory, Publ. Mat. 42 (1998), no. 1, 3-66. MR 1628134 (99g:31010), https://doi.org/10.5565/PUBLMAT_42198_01
  • [3] Zvi Artstein, Distributions of random sets and random selections, Israel J. Math. 46 (1983), no. 4, 313-324. MR 730347 (85m:60017), https://doi.org/10.1007/BF02762891
  • [4] Robert Badard, The law of large numbers for fuzzy processes and the estimation problem, Inform. Sci. 28 (1982), no. 3, 161-178. MR 717299 (84m:60042), https://doi.org/10.1016/0020-0255(82)90046-9
  • [5] Adriana Castaldo, Fabio Maccheroni, and Massimo Marinacci, Random correspondences as bundles of random variables, Sankhyā 66 (2004), no. 3, 409-427. MR 2108198 (2005i:28030)
  • [6] Alain Chateauneuf and Jean-Philippe Lefort, Some Fubini theorems on product $ \sigma $-algebras for non-additive measures, Internat. J. Approx. Reason. 48 (2008), no. 3, 686-696. MR 2437947 (2010g:28034), https://doi.org/10.1016/j.ijar.2007.02.007
  • [7] Z. Chen. Strong law of large numbers for capacities. Preprint, arXiv:math.PR/1006:0749.
  • [8] Xavier Fernique, Processus linéaires, processus généralisés, Ann. Inst. Fourier (Grenoble) 17 (1967), no. fasc. 1, 1-92 (French). MR 0221576 (36 #4628)
  • [9] Gustave Choquet, Theory of capacities, Ann. Inst. Fourier, Grenoble 5 (1953-1954), 131-295 (1955). MR 0080760 (18,295g)
  • [10] Gert De Cooman and Enrique Miranda, Weak and strong laws of large numbers for coherent lower previsions, J. Statist. Plann. Inference 138 (2008), no. 8, 2409-2432. MR 2414259 (2009c:60065), https://doi.org/10.1016/j.jspi.2007.10.020
  • [11] Fabio Gagliardi Cozman, Concentration inequalities and laws of large numbers under epi-stemic and regular irrelevance, Internat. J. Approx. Reason. 51 (2010), no. 9, 1069-1084. MR 2735798 (2011m:62028), https://doi.org/10.1016/j.ijar.2010.08.009
  • [12] Dieter Denneberg, Non-additive measure and integral, Theory and Decision Library. Series B: Mathematical and Statistical Methods, vol. 27, Kluwer Academic Publishers Group, Dordrecht, 1994. MR 1320048 (96c:28017)
  • [13] Paolo Ghirardato, On independence for non-additive measures, with a Fubini theorem, J. Econom. Theory 73 (1997), no. 2, 261-291. MR 1449020 (98h:28001), https://doi.org/10.1006/jeth.1996.2241
  • [14] Itzhak Gilboa, Theory of decision under uncertainty, Econometric Society Monographs, vol. 45, Cambridge University Press, Cambridge, 2009. MR 2493167 (2010i:91002)
  • [15] Frank Hampel, Nonadditive probabilities in statistics, J. Stat. Theory Pract. 3 (2009), no. 1, 11-23. MR 2667650, https://doi.org/10.1080/15598608.2009.10411908
  • [16] Christian Hess, The distribution of unbounded random sets and the multivalued strong law of large numbers in nonreflexive Banach spaces, J. Convex Anal. 6 (1999), no. 1, 163-182. MR 1713956 (2001c:60007)
  • [17] Peter J. Huber and Volker Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist. 1 (1973), 251-263. MR 0356306 (50 #8776)
  • [18] Heinz König, Measure and integration, Springer-Verlag, Berlin, 1997. An advanced course in basic procedures and applications. MR 1633615 (99h:28001)
  • [19] Gleb A. Koshevoy, Distributive lattices and products of capacities, J. Math. Anal. Appl. 219 (1998), no. 2, 427-441. MR 1606354 (99i:06011), https://doi.org/10.1006/jmaa.1997.5830
  • [20] Fabio Maccheroni and Massimo Marinacci, A strong law of large numbers for capacities, Ann. Probab. 33 (2005), no. 3, 1171-1178. MR 2135316 (2007c:28002), https://doi.org/10.1214/009117904000001062
  • [21] Massimo Marinacci, Limit laws for non-additive probabilities and their frequentist interpretation, J. Econom. Theory 84 (1999), no. 2, 145-195. MR 1669509 (2000b:60079), https://doi.org/10.1006/jeth.1998.2479
  • [22] G. Matheron, Random sets and integral geometry, John Wiley&Sons, New York-London-Sydney, 1975. With a foreword by Geoffrey S. Watson; Wiley Series in Probability and Mathematical Statistics. MR 0385969 (52 #6828)
  • [23] Ilya Molchanov, Theory of random sets, Probability and its Applications (New York), Springer-Verlag London Ltd., London, 2005. MR 2132405 (2006b:60004)
  • [24] I. S. Molchanov, Uniform laws of large numbers for the empirical accompanying functionals of random closed sets, Teor. Veroyatnost. i Primenen. 32 (1987), no. 3, 612-616 (Russian). MR 914961 (89a:60035)
  • [25] Tommy Norberg, Random capacities and their distributions, Probab. Theory Relat. Fields 73 (1986), no. 2, 281-297. MR 855227 (88d:60016), https://doi.org/10.1007/BF00339941
  • [26] ShiGe Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A 52 (2009), no. 7, 1391-1411. MR 2520583 (2010h:60103), https://doi.org/10.1007/s11425-009-0121-8
  • [27] Fabrice Philippe, Gabriel Debs, and Jean-Yves Jaffray, Decision making with monotone lower probabilities of infinite order, Math. Oper. Res. 24 (1999), no. 3, 767-784. MR 1854252 (2002g:91050), https://doi.org/10.1287/moor.24.3.767
  • [28] Anatolii Puhalskii, Large deviations and idempotent probability, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 119, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1851048 (2002i:60056)
  • [29] Yann Rébillé, Law of large numbers of non-additive measures, J. Math. Anal. Appl. 352 (2009), no. 2, 872-879. MR 2501933 (2010e:60014), https://doi.org/10.1016/j.jmaa.2008.11.060
  • [30] Yann Rébillé, Laws of large numbers for continuous belief measures on compact spaces, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 17 (2009), no. 5, 685-704. MR 2642767 (2011c:60005), https://doi.org/10.1142/S0218488509006212
  • [31] Glenn Shafer, Allocations of probability, Ann. Probab. 7 (1979), no. 5, 827-839. MR 542132 (83d:60008)
  • [32] G. Shafer (2008). Non-additive probabilities in the work of Bernoulli and Lambert. In: Classic works of the Dempster-Shafer theory of belief functions, 117-182. Springer, Berlin.
  • [33] Peter Walley and Terrence L. Fine, Towards a frequentist theory of upper and lower probability, Ann. Statist. 10 (1982), no. 3, 741-761. MR 663429 (84b:60003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60F15, 28A12, 60A05

Retrieve articles in all journals with MSC (2010): 60F15, 28A12, 60A05


Additional Information

Pedro Terán
Affiliation: Departamento de Estadística e I.O. y D.M., Escuela Politécnica de Ingeniería, Universidad de Oviedo, E-33071 Gijón, Spain
Email: teranpedro@uniovi.es

DOI: https://doi.org/10.1090/S0002-9947-2014-06053-4
Keywords: Capacity, Choquet integral, law of large numbers, non-additive probability
Received by editor(s): July 24, 2012
Received by editor(s) in revised form: December 8, 2012
Published electronically: June 6, 2014
Additional Notes: This paper is dedicated to the memory of Professor Teófilo Brezmes Brezmes, an excellent lecturer and appreciated colleague.
This research was partially funded by Spain’s Ministerio de Ciencia e Innovación (TIN2008-06796-C04-04, MTM2011-22993, ECO1022–24181).
Article copyright: © Copyright 2014 Pedro Terán

American Mathematical Society