Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The classification of orthogonally rigid $ G_2$-local systems and related differential operators


Authors: Michael Dettweiler and Stefan Reiter
Journal: Trans. Amer. Math. Soc. 366 (2014), 5821-5851
MSC (2010): Primary 32S40, 20G41
DOI: https://doi.org/10.1090/S0002-9947-2014-06042-X
Published electronically: July 29, 2014
MathSciNet review: 3256185
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a criterion for a general self-adjoint differential operator of rank $ 7$ to have its monodromy group inside the exceptional algebraic group $ G_2(\mathbb{C}).$ We then classify orthogonally rigid local systems of rank $ 7$ on the punctured projective line whose monodromy is dense in the exceptional algebraic group $ G_2(\mathbb{C}).$ We obtain differential operators corresponding to these local systems under Riemann-Hilbert correspondence.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aschbacher, Chevalley groups of type $ G_2$ as the group of a trilinear form, J. Algebra 109 (1987), no. 1, 193-259. MR 898346 (88g:20089), https://doi.org/10.1016/0021-8693(87)90173-6
  • [2] F. Beukers and G. Heckman, Monodromy for the hypergeometric function $ _nF_{n-1}$, Invent. Math. 95 (1989), no. 2, 325-354. MR 974906 (90f:11034), https://doi.org/10.1007/BF01393900
  • [3] Spencer Bloch and Hélène Esnault, Homology for irregular connections, J. Théor. Nombres Bordeaux 16 (2004), no. 2, 357-371 (English, with English and French summaries). MR 2143558 (2006f:32040)
  • [4] Michael Bogner and Stefan Reiter, On symplectically rigid local systems of rank four and Calabi-Yau operators, J. Symbolic Comput. 48 (2013), 64-100. MR 2980467, https://doi.org/10.1016/j.jsc.2011.11.007
  • [5] Bomshik Chang and Rimhak Ree, The characters of $ G_{2}(q)$, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London, 1974, pp. 395-413. MR 0364419 (51 #673)
  • [6] Michael Dettweiler and Stefan Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), no. 6, 761-798. Algorithmic methods in Galois theory. MR 1800678 (2001k:12010), https://doi.org/10.1006/jsco.2000.0382
  • [7] Michael Dettweiler and Stefan Reiter, Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra 318 (2007), no. 1, 1-24. MR 2363121 (2008j:34138), https://doi.org/10.1016/j.jalgebra.2007.08.029
  • [8] Michael Dettweiler and Stefan Reiter, Rigid local systems and motives of type $ G_2$, Compos. Math. 146 (2010), no. 4, 929-963. With an appendix by Michael Dettweiler and Nicholas M. Katz. MR 2660679 (2011g:14042), https://doi.org/10.1112/S0010437X10004641
  • [9] Michael Dettweiler and Stefan Wewers, Variation of local systems and parabolic cohomology, Israel J. Math. 156 (2006), 157-185. MR 2282374 (2007k:14013), https://doi.org/10.1007/BF02773830
  • [10] Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE--a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175-210. Computational methods in Lie theory (Essen, 1994). MR 1486215 (99m:20017), https://doi.org/10.1007/BF01190329
  • [11] G. Hiss,
    Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik,
    Habilitationsschrift, Aachen 1990.
  • [12] Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536 (93a:14009)
  • [13] Nicholas M. Katz, Rigid local systems, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996. MR 1366651 (97e:14027)
  • [14] Martin W. Liebeck and Gary M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 169 (2004), no. 802, vi+227. MR 2044850 (2005b:20082)
  • [15] Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1711577 (2000k:12004)
  • [16] A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110 (91g:22001)
  • [17] Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772 (2004c:12010)
  • [18] Jan Saxl and Gary M. Seitz, Subgroups of algebraic groups containing regular unipotent elements, J. London Math. Soc. (2) 55 (1997), no. 2, 370-386. MR 1438641 (98m:20057), https://doi.org/10.1112/S0024610797004808
  • [19] Leonard L. Scott, Matrices and cohomology, Ann. of Math. (2) 105 (1977), no. 3, 473-492. MR 0447434 (56 #5746)
  • [20] Karl Strambach and Helmut Völklein, On linearly rigid tuples, J. Reine Angew. Math. 510 (1999), 57-62. MR 1696090 (2000e:20075), https://doi.org/10.1515/crll.1999.048
  • [21] André Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157. MR 0169956 (30 #199)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32S40, 20G41

Retrieve articles in all journals with MSC (2010): 32S40, 20G41


Additional Information

Michael Dettweiler
Affiliation: Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
Email: michael.dettweiler@uni-bayreuth.de

Stefan Reiter
Affiliation: Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
Email: stefan.reiter@uni-bayreuth.de

DOI: https://doi.org/10.1090/S0002-9947-2014-06042-X
Keywords: Ordinary differential equation, exceptional algebraic group, local system, middle convolution
Received by editor(s): September 27, 2012
Received by editor(s) in revised form: November 13, 2012, and November 27, 2012
Published electronically: July 29, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society