Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Commuting $ U$-operators in Jordan algebras


Authors: José A. Anquela, Teresa Cortés and Holger P. Petersson
Journal: Trans. Amer. Math. Soc. 366 (2014), 5877-5902
MSC (2010): Primary 17C10; Secondary 20B22, 20E42, 17C40, 17C60
DOI: https://doi.org/10.1090/S0002-9947-2014-06054-6
Published electronically: July 17, 2014
MathSciNet review: 3256187
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For elements $ x,y$ in a non-degenerate non-unital Jordan algebra over a commutative ring, the relation $ x \circ y = 0$ is shown to imply that the $ U$-operators of $ x$ and $ y$ commute: $ U_xU_y = U_yU_x$. The proof rests on the Zel$ '$manov-McCrimmon classification of strongly prime quadratic Jordan algebras.


References [Enhancements On Off] (What's this?)

  • [1] Tom De Medts and Yoav Segev, A course on Moufang sets, Innov. Incidence Geom. 9 (2009), 79-122. MR 2658895 (2011h:20058)
  • [2] Tom De Medts and Richard M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335 (2006), no. 2, 415-433. MR 2221120 (2007e:17027), https://doi.org/10.1007/s00208-006-0761-8
  • [3] John R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Memoirs of the American Mathematical Society, No. 104, American Mathematical Society, Providence, R.I., 1970. MR 0271180 (42 #6063)
  • [4] John R. Faulkner, Finding octonion algebras in associative algebras, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1027-1030. MR 931729 (89g:17003), https://doi.org/10.2307/2047585
  • [5] Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099 (40 #4330)
  • [6] Nathan Jacobson, Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research, Bombay, 1969, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45. MR 0325715 (48:4062)
  • [7] Nathan Jacobson, Structure theory of Jordan algebras, University of Arkansas Lecture Notes in Mathematics, vol. 5, University of Arkansas, Fayetteville, Ark., 1981. MR 634508 (83b:17015)
  • [8] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • [9] Robert E. Lewand and Kevin McCrimmon, Macdonald's theorem for quadratic Jordan algebras, Pacific J. Math. 35 (1970), 681-706. MR 0299648 (45 #8696)
  • [10] Kevin McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495-510. MR 0238916 (39 #276)
  • [11] Kevin McCrimmon, The Freudenthal-Springer-Tits constructions revisited, Trans. Amer. Math. Soc. 148 (1970), 293-314. MR 0271181 (42 #6064)
  • [12] Kevin McCrimmon, Quadratic Jordan algebras and cubing operations, Trans. Amer. Math. Soc. 153 (1971), 265-278. MR 0268239 (42 #3138)
  • [13] Kevin McCrimmon, Nonassociative algebras with scalar involution, Pacific J. Math. 116 (1985), no. 1, 85-109. MR 769825 (86d:17003)
  • [14] Kevin McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004. MR 2014924 (2004i:17001)
  • [15] Kevin McCrimmon and Ephim Zelmanov, The structure of strongly prime quadratic Jordan algebras, Adv. in Math. 69 (1988), no. 2, 133-222. MR 946263 (89k:17052), https://doi.org/10.1016/0001-8708(88)90001-1
  • [16] Holger P. Petersson, An embedding theorem for reduced Albert algebras over arbitrary fields, to appear in Communications in Algebra.
  • [17] Holger P. Petersson, On linear and quadratic Jordan division algebras, Math. Z. 177 (1981), no. 4, 541-548. MR 624231 (82h:17013), https://doi.org/10.1007/BF01219086
  • [18] Holger P. Petersson and Michel L. Racine, Jordan algebras of degree $ 3$ and the Tits process, J. Algebra 98 (1986), no. 1, 211-243. MR 825144 (87h:17038a), https://doi.org/10.1016/0021-8693(86)90024-4
  • [19] Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1763974 (2001f:17006)
  • [20] Armin Thedy, $ z$-closed ideals of quadratic Jordan algebras, Comm. Algebra 13 (1985), no. 12, 2537-2565. MR 811523 (87a:17026), https://doi.org/10.1080/00927878508823290
  • [21] Jacques Tits and Richard M. Weiss, Moufang polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1938841 (2003m:51008)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17C10, 20B22, 20E42, 17C40, 17C60

Retrieve articles in all journals with MSC (2010): 17C10, 20B22, 20E42, 17C40, 17C60


Additional Information

José A. Anquela
Affiliation: Departamento de Matemáticas, Universidad de Oviedo, E-33007 Oviedo, Spain
Email: anque@orion.ciencias.uniovi.es

Teresa Cortés
Affiliation: Departamento de Matemáticas, Universidad de Oviedo, E-33007 Oviedo, Spain
Email: cortes@orion.ciencias.uniovi.es

Holger P. Petersson
Affiliation: Fakultät für Mathematik und Informatik, FernUniversität in Hagen, D-58084 Hagen, Germany
Email: holger.petersson@fernuni-hagen.de

DOI: https://doi.org/10.1090/S0002-9947-2014-06054-6
Received by editor(s): August 20, 2012
Received by editor(s) in revised form: December 13, 2012, and December 17, 2012
Published electronically: July 17, 2014
Additional Notes: The research of the first two authors was partially supported by the Spanish Ministerio de Economía y Competitividad and Fondos FEDER, MTM2010-16153, and MTM2013-40841-P
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society