Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Invariance principles for self-similar set-indexed random fields


Authors: Hermine Biermé and Olivier Durieu
Journal: Trans. Amer. Math. Soc. 366 (2014), 5963-5989
MSC (2010): Primary 60F17, 60G60, 60G18, 60G10, 60D05
DOI: https://doi.org/10.1090/S0002-9947-2014-06135-7
Published electronically: July 1, 2014
MathSciNet review: 3256190
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a stationary random field $ (X_j)_{j\in \mathbb{Z}^d}$ and some measure $ \mu $ on $ \mathbb{R}^d$, we consider the set-indexed weighted sum process

$\displaystyle S_n(A)=\sum _{j\in \mathbb{Z}^d}\mu (nA\cap R_j)^\frac 12 X_j,$

where $ R_j$ is the unit cube with lower corner $ j$. We establish a general invariance principle under a $ p$-stability assumption on the $ X_j$'s and an entropy condition on the class of sets $ A$. The limit processes are self-similar set-indexed Gaussian processes with continuous sample paths. Using Chentsov's type representations to choose appropriate measures $ \mu $ and particular sets $ A$, we show that these limits can be Lévy (fractional) Brownian fields or (fractional) Brownian sheets.

References [Enhancements On Off] (What's this?)

  • [1] Kenneth S. Alexander and Ronald Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986), no. 2, 582-597. MR 832025 (88b:60084)
  • [2] Antoine Ayache, Stéphanie Leger, and Monique Pontier, Drap brownien fractionnaire, Potential Anal. 17 (2002), no. 1, 31-43 (French, with English and French summaries). MR 1906407 (2003i:60086), https://doi.org/10.1023/A:1015260803576
  • [3] Antoine Ayache and Yimin Xiao, Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets, J. Fourier Anal. Appl. 11 (2005), no. 4, 407-439. MR 2169474 (2006g:60056), https://doi.org/10.1007/s00041-005-4048-3
  • [4] E. Bolthausen, On the central limit theorem for stationary mixing random fields, Ann. Probab. 10 (1982), no. 4, 1047-1050. MR 672305 (84c:60035)
  • [5] R. C. Bradley, Introduction to strong mixing conditions. Vol. 1, 2, 3, Kendrick Press, Heber City, UT, 2007. MR 2325294; MR2325295: MR2325296
  • [6] Dong Ching Chen, A uniform central limit theorem for nonuniform $ \phi $-mixing random fields, Ann. Probab. 19 (1991), no. 2, 636-649. MR 1106280 (93a:60050)
  • [7] N. N. Čencov, Le mouvement brownien à plusieurs paramètres de M. Lévy et le bruit blanc généralisé, Teor. Veroyatnost. i Primenen. 2 (1957), 281-282 (Russian, with French summary). MR 0094857 (20 #1366)
  • [8] Jérôme Dedecker, A central limit theorem for stationary random fields, Probab. Theory Related Fields 110 (1998), no. 3, 397-426. MR 1616496 (99e:60058), https://doi.org/10.1007/s004400050153
  • [9] Jérôme Dedecker, Exponential inequalities and functional central limit theorems for a random fields, ESAIM Probab. Statist. 5 (2001), 77-104 (electronic). MR 1875665 (2003a:60054), https://doi.org/10.1051/ps:2001103
  • [10] Jérôme Dedecker, Paul Doukhan, Gabriel Lang, José Rafael León R., Sana Louhichi, and Clémentine Prieur, Weak dependence: with examples and applications, Lecture Notes in Statistics, vol. 190, Springer, New York, 2007. MR 2338725 (2009a:62009)
  • [11] Jérôme Dedecker and Florence Merlevède, The conditional central limit theorem in Hilbert spaces, Stochastic Process. Appl. 108 (2003), no. 2, 229-262. MR 2019054 (2004j:60046), https://doi.org/10.1016/j.spa.2003.07.004
  • [12] Paul Doukhan, Models, inequalities, and limit theorems for stationary sequences, Theory and applications of long-range dependence, Birkhäuser Boston, Boston, MA, 2003, pp. 43-100. MR 1956044
  • [13] R. M. Dudley, Central limit theorems for empirical measures, Ann. Probab. 6 (1978), no. 6, 899-929 (1979). MR 512411 (81k:60029a)
  • [14] Mohamed El Machkouri, Dalibor Volný, and Wei Biao Wu, A central limit theorem for stationary random fields, Stochastic Process. Appl. 123 (2013), no. 1, 1-14. MR 2988107, https://doi.org/10.1016/j.spa.2012.08.014
  • [15] Charles M. Goldie and Priscilla E. Greenwood, Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes, Ann. Probab. 14 (1986), no. 3, 817-839. MR 841586 (88e:60038b)
  • [16] P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. Probability and Mathematical Statistics. MR 624435 (83a:60001)
  • [17] E. J. Hannan, The central limit theorem for time series regression, Stochastic Process. Appl. 9 (1979), no. 3, 281-289. MR 562049 (82e:60038), https://doi.org/10.1016/0304-4149(79)90050-4
  • [18] Lothar Heinrich, Asymptotic behaviour of an empirical nearest-neighbour distance function for stationary Poisson cluster processes, Math. Nachr. 136 (1988), 131-148. MR 952468 (89j:60066), https://doi.org/10.1002/mana.19881360109
  • [19] Erick Herbin and Ely Merzbach, A set-indexed fractional Brownian motion, J. Theoret. Probab. 19 (2006), no. 2, 337-364. MR 2283380 (2007m:60096), https://doi.org/10.1007/s10959-006-0019-0
  • [20] Anna Kamont, On the fractional anisotropic Wiener field, Probab. Math. Statist. 16 (1996), no. 1, 85-98. MR 1407935 (98a:60064)
  • [21] Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015 (93c:60001)
  • [22] Paul Lévy, Processus Stochastiques et Mouvement Brownien. Suivi d'une note de M. Loève, Gauthier-Villars, Paris, 1948 (French). MR 0029120 (10,551a)
  • [23] Toshio Mori, Representation of linearly additive random fields, Probab. Theory Related Fields 92 (1992), no. 1, 91-115. MR 1156452 (93b:60103), https://doi.org/10.1007/BF01205238
  • [24] David Nualart, Malliavin calculus and its applications, CBMS Regional Conference Series in Mathematics, vol. 110, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2009. MR 2498953 (2010b:60164)
  • [25] Mina Ossiander and Ronald Pyke, Lévy's Brownian motion as a set-indexed process and a related central limit theorem, Stochastic Process. Appl. 21 (1985), no. 1, 133-145. MR 834993 (87k:60139), https://doi.org/10.1016/0304-4149(85)90382-5
  • [26] Magda Peligrad and Sergey Utev, Central limit theorem for stationary linear processes, Ann. Probab. 34 (2006), no. 4, 1608-1622. MR 2257658 (2008b:60040), https://doi.org/10.1214/009117906000000179
  • [27] Gennady Samorodnitsky and Murad S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, New York, 1994. Stochastic models with infinite variance. MR 1280932 (95f:60024)
  • [28] Yumiko Sato, Distributions of stable random fields of Chentsov type, Nagoya Math. J. 123 (1991), 119-139. MR 1126186 (92j:60016)
  • [29] Shigeo Takenaka, Representation of Euclidean random field, Nagoya Math. J. 105 (1987), 19-31. MR 881005 (88j:60103)
  • [30] Shigeo Takenaka, Integral-geometric construction of self-similar stable processes, Nagoya Math. J. 123 (1991), 1-12. MR 1126180 (93d:60070)
  • [31] Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With applications to statistics. MR 1385671 (97g:60035)
  • [32] Y. Wang.
    An invariance principle for fractional Brownian sheets.
    J. Theor. Probab., online February 2013.
  • [33] Wei Biao Wu, Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA 102 (2005), no. 40, 14150-14154 (electronic). MR 2172215, https://doi.org/10.1073/pnas.0506715102
  • [34] Wei Biao Wu, Asymptotic theory for stationary processes, Stat. Interface 4 (2011), no. 2, 207-226. MR 2812816 (2012g:62401)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60F17, 60G60, 60G18, 60G10, 60D05

Retrieve articles in all journals with MSC (2010): 60F17, 60G60, 60G18, 60G10, 60D05


Additional Information

Hermine Biermé
Affiliation: MAP5, UMR-CNRS 8145, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France – and – Laboratoire de Mathématiques et Physique Théorique UMR-CNRS 7350, Fédération Denis Poisson FR-CNRS 2964, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France
Email: hermine.bierme@mi.parisdescartes.fr

Olivier Durieu
Affiliation: Laboratoire de Mathématiques et Physique Théorique UMR-CNRS 7350, Fédération Denis Poisson FR-CNRS 2964, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France
Email: olivier.durieu@lmpt.univ-tours.fr

DOI: https://doi.org/10.1090/S0002-9947-2014-06135-7
Keywords: Dependent random field, invariance principle, set-indexed process, L\'evy fractional Brownian field, Chentsov's type representation, physical dependence measure, Vapnik-Chervonenkis dimension
Received by editor(s): September 10, 2012
Received by editor(s) in revised form: January 28, 2013
Published electronically: July 1, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society