Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sequential formulae for the normal cone to sublevel sets


Authors: A. Cabot and L. Thibault
Journal: Trans. Amer. Math. Soc. 366 (2014), 6591-6628
MSC (2010): Primary 90C25, 52A41, 49J52; Secondary 34A60
DOI: https://doi.org/10.1090/S0002-9947-2014-06151-5
Published electronically: May 2, 2014
MathSciNet review: 3267020
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a reflexive Banach space and let $ \Phi $ be an extended real-valued lower semicontinuous convex function on $ X$. Given a real $ \lambda $ and the sublevel set $ S=[\Phi \leq \lambda ]$, we establish at $ {\overline {x}}\in S$ the following formula for the normal cone to $ S$:

$\displaystyle N_S({\overline {x}})=\limsup _{x\to {\overline {x}}}\, \mathbb{R}_+\, \partial \Phi (x)$$\displaystyle \quad \mbox {if} \quad \Phi ({\overline {x}})=\lambda ,$ ($ \star $)

without any qualification condition. The case $ \Phi ({\overline {x}})<\lambda $ is also studied. Here $ \mathbb{R}_+:=[0,+\infty [$ and $ \partial \Phi $ stands for the subdifferential of $ \Phi $ in the sense of convex analysis. The proof is based on the sequential convex subdifferential calculus developed previously by the second author. Formula $ (\star )$ is extended to nonreflexive Banach spaces via the use of nets. The normal cone to the intersection of finitely many sublevel sets is also examined, thus leading to new formulae without a qualification condition. Our study goes beyond the convex framework: when $ \dim X<+\infty $, we show that the inclusion of the left member of $ (\star )$ into the right one still holds true for a locally Lipschitz continuous function. Finally, an application of formula $ (\star )$ is given to the study of the asymptotic behavior of some gradient dynamical system.

References [Enhancements On Off] (What's this?)

  • [1] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38 (2000), no. 4, 1102-1119 (electronic). MR 1760062 (2001e:34118), https://doi.org/10.1137/S0363012998335802
  • [2] H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 (86f:49002)
  • [3] H. Attouch, J.-B. Baillon, and M. Théra, Variational sum of monotone operators, J. Convex Anal. 1 (1994), no. 1, 1-29. MR 1326939 (97a:47086)
  • [4] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces, MPS/SIAM Series on Optimization, vol. 6, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. Applications to PDEs and optimization. MR 2192832 (2006j:49001)
  • [5] H. Attouch, A. Cabot, and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations, Adv. Math. Sci. Appl. 12 (2002), no. 1, 273-306. MR 1909449 (2003e:34017)
  • [6] H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math. 2 (2000), no. 1, 1-34. MR 1753136 (2001b:37025), https://doi.org/10.1142/S0219199700000025
  • [7] A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and variational inequalities, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1931309 (2003i:49002)
  • [8] D. Azé, Eléments d'analyse convexe et variationnelle, Ellipses, Paris, 1997.
  • [9] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000. MR 1756264 (2001g:90003)
  • [10] J. M. Borwein, A note on $ \varepsilon $-subgradients and maximal monotonicity, Pacific J. Math. 103 (1982), no. 2, 307-314. MR 705231 (85h:90091)
  • [11] J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 3, Springer-Verlag, New York, 2000. Theory and examples. MR 1757448 (2001h:49001)
  • [12] M. Bounkhel and L. Thibault, On various notions of regularity of sets in nonsmooth analysis, Nonlinear Anal. 48 (2002), no. 2, Ser. A: Theory Methods, 223-246. MR 1870754 (2002j:46048), https://doi.org/10.1016/S0362-546X(00)00183-8
  • [13] N. Bourbaki, Éléments de mathématique. Fasc. XV. Livre V: Espaces vectoriels topologiques. Chapitre I: Espaces vectoriels topologiques sur un corps valué. Chapitre II: Ensembles convexes et espaces localement convexes, Actualités Scientifiques et Industrielles, No. 1189. Deuxième édition revue et corrigée, Hermann, Paris, 1966 (French). MR 0203425 (34 #3277)
  • [14] A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611. MR 0178103 (31 #2361)
  • [15] A. Cabot, H. Engler, and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5983-6017. MR 2529922 (2010m:34094), https://doi.org/10.1090/S0002-9947-09-04785-0
  • [16] A. Cabot, H. Engler, and S. Gadat, Second-order differential equations with asymptotically small dissipation and piecewise flat potentials, Proceedings of the Seventh Mississippi State-UAB Conference on Differential Equations and Computational Simulations, Electron. J. Differ. Equ. Conf., vol. 17, Southwest Texas State Univ., San Marcos, TX, 2009, pp. 33-38. MR 2605582 (2011d:34096)
  • [17] A. Cabot and P. Frankel, Asymptotics for some proximal-like method involving inertia and memory aspects, Set-Valued Var. Anal. 19 (2011), no. 1, 59-74. MR 2770897 (2011m:65123), https://doi.org/10.1007/s11228-010-0140-1
  • [18] A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, J. Differential Equations 252 (2012), no. 1, 294-322. MR 2852207, https://doi.org/10.1016/j.jde.2011.09.012
  • [19] A. Cabot and L. Paoli, Asymptotics for some vibro-impact problems with a linear dissipation term, J. Math. Pures Appl. (9) 87 (2007), no. 3, 291-323 (English, with English and French summaries). MR 2312513 (2008e:34024), https://doi.org/10.1016/j.matpur.2007.01.003
  • [20] F. H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590 (85m:49002)
  • [21] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. MR 1488695 (99a:49001)
  • [22] J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France Mém. 60 (1979), 57-85. Analyse non convexe (Proc. Colloq., Pau, 1977). MR 562256 (81a:90138)
  • [23] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305, Springer-Verlag, Berlin, 1993. Fundamentals. MR 1261420 (95m:90001)
  • [24] J.-B. Hiriart-Urruty, M. Moussaoui, A. Seeger, and M. Volle, Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey, Nonlinear Anal. 24 (1995), no. 12, 1727-1754. MR 1330645 (96a:49022), https://doi.org/10.1016/0362-546X(94)00221-3
  • [25] J.-B. Hiriart-Urruty and R. R. Phelps, Subdifferential calculus using $ \epsilon $-subdifferentials, J. Funct. Anal. 118 (1993), no. 1, 154-166. MR 1245600 (94h:49029), https://doi.org/10.1006/jfan.1993.1141
  • [26] F. Jules and M. Lassonde, Formulas for subdifferentials of sums of convex functions, J. Convex Anal. 9 (2002), no. 2, 519-533. Special issue on optimization (Montpellier, 2000). MR 1970570 (2004b:49029)
  • [27] F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), no. 2, 130-185 (French). MR 0423155 (54 #11136)
  • [28] B. S. Mordukhovich, Variational analysis and generalized differentiation. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006. Basic theory. MR 2191744 (2007b:49003a)
  • [29] B. S. Mordukhovich and Y. Shao, Fuzzy calculus for coderivatives of multifunctions, Nonlinear Anal. 29 (1997), no. 6, 605-626. MR 1452749 (98m:49038), https://doi.org/10.1016/S0362-546X(96)00082-X
  • [30] J.-P. Penot, Subdifferential calculus without qualification assumptions, J. Convex Anal. 3 (1996), no. 2, 207-219. MR 1448052 (2000d:49030)
  • [31] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683 (43 #445)
  • [32] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362 (98m:49001)
  • [33] L. Thibault, A generalized sequential formula for subdifferentials of sums of convex functions defined on Banach spaces, Recent developments in optimization (Dijon, 1994) Lecture Notes in Econom. and Math. Systems, vol. 429, Springer, Berlin, 1995, pp. 340-345. MR 1358408 (96h:49041), https://doi.org/10.1007/978-3-642-46823-0_25
  • [34] L. Thibault, Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control Optim. 35 (1997), no. 4, 1434-1444. MR 1453305 (98f:49020), https://doi.org/10.1137/S0363012995287714
  • [35] L. Thibault, Limiting convex subdifferential calculus with applications to integration and maximal monotonicity of subdifferential, Constructive, experimental, and nonlinear analysis (Limoges, 1999), CMS Conf. Proc., vol. 27, Amer. Math. Soc., Providence, RI, 2000, pp. 279-289. MR 1777630 (2001g:49019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 90C25, 52A41, 49J52, 34A60

Retrieve articles in all journals with MSC (2010): 90C25, 52A41, 49J52, 34A60


Additional Information

A. Cabot
Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Email: acabot@math.univ-montp2.fr

L. Thibault
Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Address at time of publication: Centro de Modelamiento Matemático (CMM), Universidad de Chile, Santiago, Chile
Email: thibault@math.univ-montp2.fr

DOI: https://doi.org/10.1090/S0002-9947-2014-06151-5
Keywords: Convex function, subdifferential, sequential subdifferential calculus, sublevel set, normal cone, nonsmooth analysis
Received by editor(s): February 5, 2013
Received by editor(s) in revised form: April 11, 2013
Published electronically: May 2, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society