Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Assouad type dimensions and homogeneity of fractals


Author: Jonathan M. Fraser
Journal: Trans. Amer. Math. Soc. 366 (2014), 6687-6733
MSC (2010): Primary 28A80; Secondary 28A78, 28A20, 28C15
DOI: https://doi.org/10.1090/S0002-9947-2014-06202-8
Published electronically: May 13, 2014
MathSciNet review: 3267023
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate several aspects of the Assouad dimension and the lower dimension, which together form a natural `dimension pair'. In particular, we compute these dimensions for certain classes of self-affine sets and quasi-self-similar sets and study their relationships with other notions of dimension, such as the Hausdorff dimension for example. We also investigate some basic properties of these dimensions including their behaviour regarding unions and products and their set theoretic complexity.


References [Enhancements On Off] (What's this?)

  • [A1] Patrice Assouad, Espaces métriques, plongements, facteurs, U.E.R. Mathématique, Université Paris XI, Orsay, 1977 (French). Thèse de doctorat; Publications Mathématiques d'Orsay, No. 223-7769. MR 0644642 (58 #30989)
  • [A2] Patrice Assouad, Étude d'une dimension métrique liée à la possibilité de plongements dans $ {\bf R}^{n}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 15, A731-A734 (French, with English summary). MR 532401 (80f:54030)
  • [B] Krzysztof Barański, Hausdorff dimension of the limit sets of some planar geometric constructions, Adv. Math. 210 (2007), no. 1, 215-245. MR 2298824 (2008e:28016), https://doi.org/10.1016/j.aim.2006.06.005
  • [Be1] T. Bedford. Crinkly curves, Markov partitions and box dimensions in self-similar sets, Ph.D dissertation, University of Warwick, 1984.
  • [Be2] Tim Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2) 33 (1986), no. 1, 89-100. MR 829390 (87g:28004), https://doi.org/10.1112/jlms/s2-33.1.89
  • [ByG] Per Bylund and Jaume Gudayol, On the existence of doubling measures with certain regularity properties, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3317-3327. MR 1676303 (2001b:28018), https://doi.org/10.1090/S0002-9939-00-05405-8
  • [F1] K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2, 339-350. MR 923687 (89h:28010), https://doi.org/10.1017/S0305004100064926
  • [F2] K. J. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc. 106 (1989), no. 2, 543-554. MR 969315 (90c:58103), https://doi.org/10.2307/2048840
  • [F3] K. J. Falconer, Sub-self-similar sets, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3121-3129. MR 1264809 (95j:28005), https://doi.org/10.2307/2154776
  • [F4] K. J. Falconer. Techniques in Fractal Geometry, John Wiley, 1997. MR 1449135 (99f:28013)
  • [F5] Kenneth Falconer, Fractal geometry, 2nd ed., John Wiley & Sons Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR 2118797 (2006b:28001)
  • [FeW] De-Jun Feng and Yang Wang, A class of self-affine sets and self-affine measures, J. Fourier Anal. Appl. 11 (2005), no. 1, 107-124. MR 2128947 (2006b:28010), https://doi.org/10.1007/s00041-004-4031-4
  • [Fr] Jonathan M. Fraser, On the packing dimension of box-like self-affine sets in the plane, Nonlinearity 25 (2012), no. 7, 2075-2092. MR 2947936, https://doi.org/10.1088/0951-7715/25/7/2075
  • [GL] Steven P. Lalley and Dimitrios Gatzouras, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), no. 2, 533-568. MR 1183358 (93j:28011), https://doi.org/10.1512/iumj.1992.41.41031
  • [H] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • [Ho] M. Hochman. On self-similar sets with overlaps and inverse theorems for entropy, preprint, to appear in Annals of Math. (2013), arXiv:1212.1873v4.
  • [How] J. D. Howroyd, On Hausdorff and packing dimension of product spaces, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 715-727. MR 1362951 (96j:28006), https://doi.org/10.1017/S0305004100074545
  • [Hu] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. MR 625600 (82h:49026), https://doi.org/10.1512/iumj.1981.30.30055
  • [KLV] A. Käenmäki, J. Lehrbäck and M. Vuorinen. Dimensions, Whitney covers, and tubular neighborhoods, to appear in Indiana Univ. Math. J., arXiv:1209.0629v2.
  • [K] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • [KP] R. Kenyon and Y. Peres, Measures of full dimension on affine-invariant sets, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 307-323. MR 1389626 (98m:28042), https://doi.org/10.1017/S0143385700008828
  • [KV] A. L. Volberg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 666-675 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 629-638. MR 903629 (88i:28006)
  • [L1] D. G. Larman, A new theory of dimension, Proc. London Math. Soc. (3) 17 (1967), 178-192. MR 0203691 (34 #3540)
  • [L2] D. G. Larman, On Hausdorff measure in finite-dimensional compact metric spaces, Proc. London Math. Soc. (3) 17 (1967), 193-206. MR 0210874 (35 #1759)
  • [Lu] Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23-76. MR 1608518 (99m:54023)
  • [LuS] Jouni Luukkainen and Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), no. 2, 531-534. MR 1443161 (99c:28009), https://doi.org/10.1090/S0002-9939-98-04201-4
  • [M] John M. Mackay, Assouad dimension of self-affine carpets, Conform. Geom. Dyn. 15 (2011), 177-187. MR 2846307, https://doi.org/10.1090/S1088-4173-2011-00232-3
  • [MT] John M. Mackay and Jeremy T. Tyson, Conformal dimension, University Lecture Series, vol. 54, American Mathematical Society, Providence, RI, 2010. Theory and application. MR 2662522 (2011d:30128)
  • [Ma] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890 (96h:28006)
  • [MaM] Pertti Mattila and R. Daniel Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 81-100. MR 1418362 (97k:28014), https://doi.org/10.1017/S0305004196001089
  • [Mc] John McLaughlin, A note on Hausdorff measures of quasi-self-similar sets, Proc. Amer. Math. Soc. 100 (1987), no. 1, 183-186. MR 883425 (88d:54054), https://doi.org/10.2307/2046143
  • [McM] Curt McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1-9. MR 771063 (86h:11061)
  • [O1] L. Olsen, Measurability of multifractal measure functions and multifractal dimension functions, Hiroshima Math. J. 29 (1999), no. 3, 435-458. MR 1728608 (2000m:28012)
  • [O2] L. Olsen, On the Assouad dimension of graph directed Moran fractals, Fractals 19 (2011), no. 2, 221-226. MR 2803238 (2012j:28011), https://doi.org/10.1142/S0218348X11005282
  • [Ols] Eric Olson, Bouligand dimension and almost Lipschitz embeddings, Pacific J. Math. 202 (2002), no. 2, 459-474. MR 1888175 (2003a:37030), https://doi.org/10.2140/pjm.2002.202.459
  • [R] James C. Robinson, Dimensions, embeddings, and attractors, Cambridge Tracts in Mathematics, vol. 186, Cambridge University Press, Cambridge, 2011. MR 2767108 (2012i:37035)
  • [S] Andreas Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111-115. MR 1191872 (94k:28012), https://doi.org/10.2307/2160849
  • [Sc] Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710 (81j:10038)
  • [XYS] Feng Xie, Yongcheng Yin, and Yeshun Sun, Uniform perfectness of self-affine sets, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3053-3057 (electronic). MR 1993212 (2004f:28019), https://doi.org/10.1090/S0002-9939-03-06976-4

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 28A80, 28A78, 28A20, 28C15

Retrieve articles in all journals with MSC (2010): 28A80, 28A78, 28A20, 28C15


Additional Information

Jonathan M. Fraser
Affiliation: Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland
Address at time of publication: Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: jmf32@st-andrews.ac.uk, jon.fraser32@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2014-06202-8
Keywords: Assouad dimension, lower dimension, self-affine carpet, Ahlfors regular, measurability, Baire hierarchy
Received by editor(s): January 18, 2013
Received by editor(s) in revised form: May 5, 2013
Published electronically: May 13, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society