Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On finite additive $ 2$-bases


Author: Laurent Habsieger
Journal: Trans. Amer. Math. Soc. 366 (2014), 6629-6646
MSC (2010): Primary 11B13; Secondary 11B34
DOI: https://doi.org/10.1090/S0002-9947-2014-06357-5
Published electronically: July 17, 2014
MathSciNet review: 3267021
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a positive integer $ N$, a set $ \mathcal {B}$ of integers from $ \{0,1,\dots ,N-1\}$ is called an additive $ 2$-basis for $ N$ if every integer $ n\in \{0,1,\dots ,N-1\}$ may be represented as the sum of $ 2$ elements of $ \mathcal {B}$. We discuss the methods used to estimate the minimal size of an additive $ 2$-basis for $ N$. We provide new examples to enrich this survey, which give good bounds. For instance, we slightly improve on the current record, from $ 0.46972$ to $ 0.46906$.


References [Enhancements On Off] (What's this?)

  • [1] L. An-Ping, On $ 2$-additive basis, http://www.peerevaluation.org/read/libraryID:28270try (2012).
  • [2] C. Sinan Güntürk and Melvyn B. Nathanson, A new upper bound for finite additive bases, Acta Arith. 124 (2006), no. 3, 235-255. MR 2250418 (2007f:11012), https://doi.org/10.4064/aa124-3-3
  • [3] Walter Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. Reine Angew. Math. 238 (1969), 161-168 (German). MR 0246848 (40 #117)
  • [4] L. Moser, On the representation of $ 1,\,2,\cdots ,n$ by sums, Acta Arith. 6 (1960), 11-13. MR 0122800 (23 #A133)
  • [5] L. Moser, J. R. Pounder, and J. Riddell, On the cardinality of $ h$-bases for $ n$, J. London Math. Soc. 44 (1969), 397-407. MR 0238798 (39 #162)
  • [6] Arnulf Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Abh. Math. Sem. Univ. Hamburg 48 (1979), 118-124 (German). MR 537452 (80g:10058), https://doi.org/10.1007/BF02941296
  • [7] J. Riddell, On bases for sets of integers, Master's Thesis, University of Alberta, 1960.
  • [8] Hans Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), no. 1, 1-30 (German). MR 1545658, https://doi.org/10.1007/BF01160061
  • [9] Gang Yu, Upper bounds for finite additive 2-bases, Proc. Amer. Math. Soc. 137 (2009), no. 1, 11-18. MR 2439419 (2009g:11010), https://doi.org/10.1090/S0002-9939-08-09430-6

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11B13, 11B34

Retrieve articles in all journals with MSC (2010): 11B13, 11B34


Additional Information

Laurent Habsieger
Affiliation: Centre de Recherches Mathématiques, CNRS UMI 3457, Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, Quebec, Canada H3C 3J7
Email: habsieger@CRM.UMontreal.ca

DOI: https://doi.org/10.1090/S0002-9947-2014-06357-5
Keywords: Additive bases
Received by editor(s): April 15, 2013
Published electronically: July 17, 2014
Additional Notes: This work was supported by the French National Agency for Research (CAESAR ANR-12-BS01-0011). The author also thanks Alain Plagne and Victor Lambert for their careful reading of a preliminary version of this paper.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society