Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Brezis-Nirenberg result for the fractional Laplacian


Authors: Raffaella Servadei and Enrico Valdinoci
Journal: Trans. Amer. Math. Soc. 367 (2015), 67-102
MSC (2010): Primary 49J35, 35A15, 35S15; Secondary 47G20, 45G05
DOI: https://doi.org/10.1090/S0002-9947-2014-05884-4
Published electronically: September 22, 2014
MathSciNet review: 3271254
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to deal with the non-local fractional counterpart of the Laplace equation involving critical non-linearities studied in the famous paper of Brezis and Nirenberg (1983). Namely, our model is the equation

$\displaystyle \left \{ \begin {array}{ll} (-\Delta )^s u-\lambda u=\vert u\vert... ...,\\ u=0 & {\mbox { in }} \mathbb{R}^n\setminus \Omega \,, \end{array} \right . $

where $ (-\Delta )^s$ is the fractional Laplace operator, $ s\in (0,1)$, $ \Omega $ is an open bounded set of $ \mathbb{R}^n$, $ n>2s$, with Lipschitz boundary, $ \lambda >0$ is a real parameter and $ 2^*=2n/(n-2s)$ is a fractional critical Sobolev exponent.

In this paper we first study the problem in a general framework; indeed we consider the equation

$\displaystyle \left \{ \begin {array}{ll} \mathcal L_K u+\lambda u+\vert u\vert... ...mega ,\\ u=0 & \mbox {in } \mathbb{R}^n\setminus \Omega \,, \end{array}\right .$

where $ \mathcal L_K$ is a general non-local integrodifferential operator of order $ s$ and $ f$ is a lower order perturbation of the critical power $ \vert u\vert^{2^*-2}u$. In this setting we prove an existence result through variational techniques.

Then, as a concrete example, we derive a Brezis-Nirenberg type result for our model equation; that is, we show that if  $ \lambda _{1,s}$ is the first eigenvalue of the non-local operator  $ (-\Delta )^s$ with homogeneous Dirichlet boundary datum, then for any  $ \lambda \in (0, \lambda _{1,s})$ there exists a non-trivial solution of the above model equation, provided $ n\geq 4s$. In this sense the present work may be seen as the extension of the classical Brezis-Nirenberg result to the case of non-local fractional operators.


References [Enhancements On Off] (What's this?)

  • [1] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. MR 0370183 (51 #6412)
  • [2] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382 (85a:46001)
  • [3] Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. MR 709644 (84h:35059), https://doi.org/10.1002/cpa.3160360405
  • [4] Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493 (2009k:35096), https://doi.org/10.1080/03605300600987306
  • [5] A. Capozzi, D. Fortunato, and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 463-470. MR 831041 (87j:35126)
  • [6] Athanase Cotsiolis and Nikolaos K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225-236. MR 2064421 (2005d:46070), https://doi.org/10.1016/j.jmaa.2004.03.034
  • [7] A. Fiscella, R. Servadei, and E. Valdinoci, Density properties for fractional Sobolev spaces, to appear in Ann. Acad. Sci. Fenn. Math.
  • [8] Rafael de la Llave and Enrico Valdinoci, Symmetry for a Dirichlet-Neumann problem arising in water waves, Math. Res. Lett. 16 (2009), no. 5, 909-918. MR 2576707 (2011b:35350)
  • [9] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. MR 2944369, https://doi.org/10.1016/j.bulsci.2011.12.004
  • [10] Paul H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 1, 215-223. MR 0488128 (58 #7695)
  • [11] Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. MR 845785 (87j:58024)
  • [12] Raffaella Servadei and Enrico Valdinoci, A multiplicity result for a class of nonlinear variational inequalities, Nonlinear Stud. 12 (2005), no. 1, 37-48. MR 2116874 (2005k:35162)
  • [13] R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam. 29 (2013), no. 3, 1091-1126. MR 3090147
  • [14] Raffaella Servadei and Enrico Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898. MR 2879266 (2012k:35095), https://doi.org/10.1016/j.jmaa.2011.12.032
  • [15] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105-2137. MR 3002745
  • [16] Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1078018 (92b:49002)
  • [17] Jinggang Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), no. 1-2, 21-41. MR 2819627 (2012e:35079), https://doi.org/10.1007/s00526-010-0378-3
  • [18] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996. MR 1400007 (97h:58037)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 49J35, 35A15, 35S15, 47G20, 45G05

Retrieve articles in all journals with MSC (2010): 49J35, 35A15, 35S15, 47G20, 45G05


Additional Information

Raffaella Servadei
Affiliation: Dipartimento di Matematica e Informatica, Università della Calabria, Ponte Pietro Bucci 31 B, 87036 Arcavacata di Rende, Cosenza, Italy
Email: servadei@mat.unical.it

Enrico Valdinoci
Affiliation: Dipartimento di Matematica, Università di Milano, Via Cesare Saldini 50, 20133 Milano, Italy and Weierstrass Institut für Angewandte Analysis und Stochastik, Mohrenstrasse 39, D-10117 Berlin, Germany and Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy
Email: enrico.valdinoci@unimi.it

DOI: https://doi.org/10.1090/S0002-9947-2014-05884-4
Keywords: Mountain Pass Theorem, critical non-linearities, best critical Sobolev constant, variational techniques, integrodifferential operators, fractional Laplacian
Received by editor(s): December 16, 2011
Received by editor(s) in revised form: May 29, 2012
Published electronically: September 22, 2014
Additional Notes: The first author was supported by the MIUR National Research Project Variational and Topological Methods in the Study of Nonlinear Phenomena, and the second author by the ERC grant $𝜀$ (Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities) and the FIRB project A&B (Analysis and Beyond).
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society