Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

   

 

Weyl group multiple Dirichlet series for symmetrizable Kac-Moody root systems


Authors: Kyu-Hwan Lee and Yichao Zhang
Journal: Trans. Amer. Math. Soc. 367 (2015), 597-625
MSC (2010): Primary 11F68; Secondary 17B67
Published electronically: June 25, 2014
MathSciNet review: 3271271
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Weyl group multiple Dirichlet series, introduced by Brubaker, Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker coefficients of Eisenstein series on metaplectic groups. Chinta and Gunnells constructed these multiple Dirichlet series for all the finite root systems using the method of averaging a Weyl group action on the field of rational functions. In this paper, we generalize Chinta and Gunnells' work and construct Weyl group multiple Dirichlet series for the root systems associated with symmetrizable Kac-Moody algebras, and establish their functional equations and meromorphic continuation.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4-6, Hermann, Paris, 1968; Masson, Paris, 1981.
  • [2] Ben Brubaker and Daniel Bump, On Kubota’s Dirichlet series, J. Reine Angew. Math. 598 (2006), 159–184. MR 2270571 (2007k:11139), 10.1515/CRELLE.2006.073
  • [3] Benjamin Brubaker, Daniel Bump, Gautam Chinta, Solomon Friedberg, and Jeffrey Hoffstein, Weyl group multiple Dirichlet series. I, Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc. Sympos. Pure Math., vol. 75, Amer. Math. Soc., Providence, RI, 2006, pp. 91–114. MR 2279932 (2007k:11073), 10.1090/pspum/075/2279932
  • [4] Ben Brubaker, Daniel Bump, and Solomon Friedberg, Weyl group multiple Dirichlet series. II. The stable case, Invent. Math. 165 (2006), no. 2, 325–355. MR 2231959 (2007g:11056), 10.1007/s00222-005-0496-2
  • [5] Ben Brubaker, Daniel Bump, and Solomon Friedberg, Twisted Weyl group multiple Dirichlet series: the stable case, Eisenstein series and applications, Progr. Math., vol. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 1-26. MR 2402679 (2009g:11059), http://dx.doi.org/10.1007/978-0-8176-4639-4_1
  • [6] Ben Brubaker, Daniel Bump, and Solomon Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases, Ann. of Math. (2) 173 (2011), no. 2, 1081-1120. MR 2776371 (2012c:11113), http://dx.doi.org/10.4007/annals.2011.173.2.13
  • [7] B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein, Weyl group multiple Dirichlet series. III. Eisenstein series and twisted unstable $ A_r$, Ann. of Math. (2) 166 (2007), no. 1, 293-316. MR 2342698 (2009j:11078), http://dx.doi.org/10.4007/annals.2007.166.293
  • [8] Alina Bucur and Adrian Diaconu, Moments of quadratic Dirichlet $ L$-functions over rational function fields, Mosc. Math. J. 10 (2010), no. 3, 485-517, 661 (English, with English and Russian summaries). MR 2732571 (2011j:11092)
  • [9] D. Bump, Introduction: Multiple Dirichlet Series. Multiple Dirichlet $ L$-functions and automorphic forms, 1-36, Progr. Math., 300, Birkhäuser/Springer, New York, 2012. MR 2952570
  • [10] Gautam Chinta and Paul E. Gunnells, Weyl group multiple Dirichlet series constructed from quadratic characters, Invent. Math. 167 (2007), no. 2, 327-353. MR 2270457 (2007j:11116), http://dx.doi.org/10.1007/s00222-006-0014-1
  • [11] Gautam Chinta and Paul E. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23 (2010), no. 1, 189-215. MR 2552251 (2011g:11100), http://dx.doi.org/10.1090/S0894-0347-09-00641-9
  • [12] Gautam Chinta and Omer Offen, A metaplectic Casselman-Shalika formula for $ {\rm GL}_r$, Amer. J. Math. 135 (2013), no. 2, 403-441. MR 3038716, http://dx.doi.org/10.1353/ajm.2013.0013
  • [13] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • [14] M. Kashiwara, On crystal bases of the $ Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516. MR 1115118 (93b:17045), http://dx.doi.org/10.1215/S0012-7094-91-06321-0
  • [15] James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston Inc., Boston, MA, 2004. MR 2023933 (2004k:17050)
  • [16] Peter J. McNamara, Metaplectic Whittaker functions and crystal bases, Duke Math. J. 156 (2011), no. 1, 1-31. MR 2746386 (2012a:11060), http://dx.doi.org/10.1215/00127094-2010-064
  • [17] Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859 (2000m:11104)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F68, 17B67

Retrieve articles in all journals with MSC (2010): 11F68, 17B67


Additional Information

Kyu-Hwan Lee
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email: khlee@math.uconn.edu

Yichao Zhang
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email: yichao.zhang@uconn.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-2014-06159-X
Received by editor(s): October 10, 2012
Received by editor(s) in revised form: October 12, 2012, November 2, 2012, April 11, 2013, and April 21, 2013
Published electronically: June 25, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.