Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Approximating functions on stratified sets


Authors: D. Drusvyatskiy and M. Larsson
Journal: Trans. Amer. Math. Soc. 367 (2015), 725-749
MSC (2010): Primary 26B05; Secondary 14B05, 15A18, 57N80, 60J99
DOI: https://doi.org/10.1090/S0002-9947-2014-06412-X
Published electronically: July 29, 2014
MathSciNet review: 3271275
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate smooth approximations of functions, with prescribed gradient behavior on a distinguished stratified subset of the domain. As an application, we outline how our results yield important consequences for a recently introduced class of stochastic processes, called the matrix-valued Bessel processes.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078 (2009e:46025)
  • [2] D. Azagra, J. Ferrera, F. López-Mesas, and Y. Rangel, Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl. 326 (2007), no. 2, 1370-1378. MR 2280987 (2007j:26010), https://doi.org/10.1016/j.jmaa.2006.03.088
  • [3] S. Basu, R. Pollack, and M. Roy, Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics), Springer-Verlag, Berlin, 2006. MR 2248869
  • [4] Seng-Kee Chua, Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J. 41 (1992), no. 4, 1027-1076. MR 1206339 (94a:46035), https://doi.org/10.1512/iumj.1992.41.41053
  • [5] M. Coste, An introduction to semialgebraic geometry, RAAG Notes, 78 pages, Institut de Recherche Mathématiques de Rennes, October 2002.
  • [6] A. Daniilidis, D. Drusvyatskiy, and A.S. Lewis, Orthogonal invariance and identifiability, SIAM J. Matrix Anal. Appl. 35 (2014), no. 2, 580-598. MR 3205737
  • [7] Aris Daniilidis, Adrian Lewis, Jérôme Malick, and Hristo Sendov, Prox-regularity of spectral functions and spectral sets, J. Convex Anal. 15 (2008), no. 3, 547-560. MR 2431411 (2009f:49013)
  • [8] A. Daniilidis, J. Malick, and H. S. Sendov, Locally symmetric submanifolds lift to spectral manifolds, arXiv:1212.3936 [math.OC] (2014).
  • [9] -, Spectral (isotropic) manifolds and their dimension, Journal d'Analyse Mathématique (to appear) (2014).
  • [10] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724 (90d:57039)
  • [11] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183 (87e:15001)
  • [12] Alois Kufner and Bohumír Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), no. 3, 537-554. MR 775568 (86i:46036)
  • [13] M. Larsson, Matrix-valued Bessel processes, arXiv:1212.4986 (2012).
  • [14] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)
  • [15] A. S. Lewis, Derivatives of spectral functions, Math. Oper. Res. 21 (1996), no. 3, 576-588. MR 1403306 (97g:90141), https://doi.org/10.1287/moor.21.3.576
  • [16] A. S. Lewis, Nonsmooth analysis of eigenvalues, Math. Program. 84 (1999), no. 1, Ser. A, 1-24. MR 1687292 (2000d:49029), https://doi.org/10.1007/BF02925352
  • [17] Adrian S. Lewis and Jérôme Malick, Alternating projections on manifolds, Math. Oper. Res. 33 (2008), no. 1, 216-234. MR 2393548 (2009k:90110), https://doi.org/10.1287/moor.1070.0291
  • [18] Adrian S. Lewis and Hristo S. Sendov, Nonsmooth analysis of singular values. I. Theory, Set-Valued Anal. 13 (2005), no. 3, 213-241. MR 2162512 (2006f:49022), https://doi.org/10.1007/s11228-004-7197-7
  • [19] John Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 475-506. MR 2958928, https://doi.org/10.1090/S0273-0979-2012-01383-6
  • [20] Norman G. Meyers and James Serrin, $ H=W$, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055-1056. MR 0164252 (29 #1551)
  • [21] Markus J. Pflaum, Analytic and geometric study of stratified spaces, Lecture Notes in Mathematics, vol. 1768, Springer-Verlag, Berlin, 2001. MR 1869601 (2002m:58007)
  • [22] Jean-Baptiste Poly and Gilles Raby, Fonction distance et singularités, Bull. Sci. Math. (2) 108 (1984), no. 2, 187-195 (French, with English summary). MR 769927 (86d:32008)
  • [23] Marie-Hélène Schwartz, Champs radiaux sur une stratification analytique, Travaux en Cours [Works in Progress], vol. 39, Hermann, Paris, 1991 (French). MR 1096495 (92i:32041)
  • [24] Hristo S. Sendov, The higher-order derivatives of spectral functions, Linear Algebra Appl. 424 (2007), no. 1, 240-281. MR 2324386 (2008c:47035), https://doi.org/10.1016/j.laa.2006.12.013
  • [25] Bengt Ove Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000. MR 1774162 (2002f:31027)
  • [26] Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497-540. MR 1404337 (97i:32008), https://doi.org/10.1215/S0012-7094-96-08416-1

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 26B05, 14B05, 15A18, 57N80, 60J99

Retrieve articles in all journals with MSC (2010): 26B05, 14B05, 15A18, 57N80, 60J99


Additional Information

D. Drusvyatskiy
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350 — and — Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: ddrusv@uw.edu

M. Larsson
Affiliation: Swiss Finance Institute, École Polytechnique Fédérale de Lausanne, Switzerland
Email: larsson@epfl.ch

DOI: https://doi.org/10.1090/S0002-9947-2014-06412-X
Keywords: Stratification, stratified vector field, approximation, normal bundle, Bessel process, Sobolev space
Received by editor(s): November 16, 2012
Received by editor(s) in revised form: August 15, 2013
Published electronically: July 29, 2014
Additional Notes: The first author’s research was made with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a
The second author gratefully acknowledges funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307465-POLYTE
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society