Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature II


Authors: Bobo Hua and Jürgen Jost
Journal: Trans. Amer. Math. Soc. 367 (2015), 2509-2526
MSC (2010): Primary 31C05, 05C81, 05C63
DOI: https://doi.org/10.1090/S0002-9947-2014-06167-9
Published electronically: November 24, 2014
MathSciNet review: 3301872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a previous paper, we applied Alexandrov geometry methods to study infinite semiplanar graphs with nonnegative combinatorial curvature. We proved the weak relative volume comparison and the Poincaré inequality on these graphs to obtain a dimension estimate for polynomial growth harmonic functions which is asymptotically quadratic in the growth rate. In the present paper, instead of using volume comparison on the graph, we translate the problem to a polygonal surface by filling polygons into the graph with edge lengths 1. This polygonal surface then is an Alexandrov space of nonnegative curvature. From a harmonic function on the graph, we construct a function on the polygonal surface that is not necessarily harmonic, but satisfies crucial estimates. Using the arguments on the polygonal surface, we obtain the optimal dimension estimate for polynomial growth harmonic functions on the graph which is linear in the growth rate.


References [Enhancements On Off] (What's this?)

  • [1] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418 (2002e:53053)
  • [2] Yu. Burago, M. Gromov, and G. Perelman, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3-51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 1-58. MR 1185284 (93m:53035), https://doi.org/10.1070/RM1992v047n02ABEH000877
  • [3] O. Baues and N. Peyerimhoff, Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom. 25 (2001), no. 1, 141-159. MR 1797301 (2001k:57004), https://doi.org/10.1007/s004540010076
  • [4] Oliver Baues and Norbert Peyerimhoff, Geodesics in non-positively curved plane tessellations, Adv. Geom. 6 (2006), no. 2, 243-263. MR 2243299 (2007f:52043), https://doi.org/10.1515/ADVGEOM.2006.014
  • [5] Beifang Chen, The Gauss-Bonnet formula of polytopal manifolds and the characterization of embedded graphs with nonnegative curvature, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1601-1611. MR 2470818 (2010d:52034), https://doi.org/10.1090/S0002-9939-08-09739-6
  • [6] Beifang Chen and Guantao Chen, Gauss-Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces, Graphs Combin. 24 (2008), no. 3, 159-183. MR 2410938 (2009g:05037), https://doi.org/10.1007/s00373-008-0782-z
  • [7] Roger Chen and Jiaping Wang, Polynomial growth solutions to higher-order linear elliptic equations and systems, Pacific J. Math. 229 (2007), no. 1, 49-61. MR 2276502 (2008a:35060), https://doi.org/10.2140/pjm.2007.229.49
  • [8] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. MR 0385749 (52 #6608)
  • [9] Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 1997. MR 1421568 (97k:58183)
  • [10] Tobias H. Colding and William P. Minicozzi II, Harmonic functions with polynomial growth, J. Differential Geom. 46 (1997), no. 1, 1-77. MR 1472893 (98h:53060)
  • [11] Tobias H. Colding and William P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725-747. MR 1491451 (98m:53052), https://doi.org/10.2307/2952459
  • [12] Tobias H. Colding and William P. Minicozzi II, Weyl type bounds for harmonic functions, Invent. Math. 131 (1998), no. 2, 257-298. MR 1608571 (99b:53052), https://doi.org/10.1007/s002220050204
  • [13] Tobias H. Colding and William P. Minicozzi II, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math. 51 (1998), no. 2, 113-138. MR 1488297 (98m:53053), https://doi.org/10.1002/(SICI)1097-0312(199802)51:2$ \langle $113::AID-CPA1$ \rangle $3.0.CO;2-E
  • [14] T. Coulhon and A. Grigoryan, Random walks on graphs with regular volume growth, Geom. Funct. Anal. 8 (1998), no. 4, 656-701. MR 1633979 (99e:60153), https://doi.org/10.1007/s000390050070
  • [15] T. Delmotte, Harnack inequalities on graphs, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997-1998, 217-228. MR 1666463 (2001f:58071
  • [16] T. Delmotte, Inégalité de Harnack elliptique sur les graphes, Colloq. Math. 72 (1997), no. 1, 19-37 (French). MR 1425544 (98m:39044)
  • [17] Matt DeVos and Bojan Mohar, An analogue of the Descartes-Euler formula for infinite graphs and Higuchi's conjecture, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3287-3300 (electronic). MR 2299456 (2008e:05041), https://doi.org/10.1090/S0002-9947-07-04125-6
  • [18] Jozef Dodziuk and Leon Karp, Spectral and function theory for combinatorial Laplacians, Geometry of random motion (Ithaca, N.Y., 1987) Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 25-40. MR 954626 (89h:58220), https://doi.org/10.1090/conm/073/954626
  • [19] Harold Donnelly and Charles Fefferman, Nodal domains and growth of harmonic functions on noncompact manifolds, J. Geom. Anal. 2 (1992), no. 1, 79-93. MR 1140898 (93b:58150), https://doi.org/10.1007/BF02921335
  • [20] A. Grigor'yan, Analysis on graphs, lecture notes, University of Bielefeld, 2009.
  • [21] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. MR 919829 (89e:20070), https://doi.org/10.1007/978-1-4613-9586-7_3
  • [22] Branko Grünbaum and G. C. Shephard, Tilings and patterns, W. H. Freeman and Company, New York, 1987. MR 857454 (88k:52018)
  • [23] Yusuke Higuchi, Combinatorial curvature for planar graphs, J. Graph Theory 38 (2001), no. 4, 220-229. MR 1864922 (2002i:05109), https://doi.org/10.1002/jgt.10004
  • [24] Ilkka Holopainen and Paolo M. Soardi, A strong Liouville theorem for $ p$-harmonic functions on graphs, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 1, 205-226. MR 1430400 (97m:31004)
  • [25] B. Hua, Generalized Liouville theorem in nonnegatively curved Alexandrov spaces, Chin. Ann. Math. Ser. B 30 (2009), no. 2, 111-128. MR 2487589 (2010d:53043), https://doi.org/10.1007/s11401-008-0376-3
  • [26] B. Hua, Harmonic functions of polynomial growth on singular spaces with nonnegative Ricci curvature, Proc. Amer. Math. Soc. 139 (2011), no. 6, 2191-2205. MR 2775397 (2012e:53062), https://doi.org/10.1090/S0002-9939-2010-10635-4
  • [27] B. Hua, J. Jost and S. Liu, Geometric aspects of infinite semiplanar graphs with nonnegative curvature, to appear in J. Reine Angew. Math., DOI 10:1515/crelle-2013-0015.
  • [28] M. Ishida, Pseudo-curvature of a graph, lecture at ``Workshop on topological graph theory'', Yokohama National University, 1990.
  • [29] Seok Woo Kim and Yong Hah Lee, Polynomial growth harmonic functions on connected sums of complete Riemannian manifolds, Math. Z. 233 (2000), no. 1, 103-113. MR 1738354 (2001h:53050), https://doi.org/10.1007/PL00004785
  • [30] Matthias Keller, The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann. 346 (2010), no. 1, 51-66. MR 2558886 (2010m:05180), https://doi.org/10.1007/s00208-009-0384-y
  • [31] Matthias Keller and Norbert Peyerimhoff, Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z. 268 (2011), no. 3-4, 871-886. MR 2818734 (2012i:05062), https://doi.org/10.1007/s00209-010-0699-0
  • [32] Matthias Keller, Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom. 46 (2011), no. 3, 500-525. MR 2826967 (2012h:05081), https://doi.org/10.1007/s00454-011-9333-0
  • [33] Bruce Kleiner, A new proof of Gromov's theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010), no. 3, 815-829. MR 2629989 (2012d:20089), https://doi.org/10.1090/S0894-0347-09-00658-4
  • [34] Kazuhiro Kuwae, Yoshiroh Machigashira, and Takashi Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269-316. MR 1865418 (2002m:58052), https://doi.org/10.1007/s002090100252
  • [35] Yong Hah Lee, Polynomial growth harmonic functions on complete Riemannian manifolds, Rev. Mat. Iberoamericana 20 (2004), no. 2, 315-332. MR 2073122 (2005h:53056), https://doi.org/10.4171/RMI/391
  • [36] Peter Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4 (1997), no. 1, 35-44. MR 1432808 (98i:53054)
  • [37] Peter Li, Harmonic functions and applications to complete manifolds, XIV Escola de Geometria Diferencial. [XIV School of Differential Geometry], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2006. MR 2369440 (2009a:53056)
  • [38] Peter Li and Luen-Fai Tam, Complete surfaces with finite total curvature, J. Differential Geom. 33 (1991), no. 1, 139-168. MR 1085138 (92e:53051)
  • [39] Peter Li and Jiaping Wang, Counting massive sets and dimensions of harmonic functions, J. Differential Geom. 53 (1999), no. 2, 237-278. MR 1802723 (2001k:53063)
  • [40] Peter Li and Jiaping Wang, Mean value inequalities, Indiana Univ. Math. J. 48 (1999), no. 4, 1257-1283. MR 1757075 (2001e:58032), https://doi.org/10.1512/iumj.1999.48.1714
  • [41] Peter Li and Jiaping Wang, Counting dimensions of $ L$-harmonic functions, Ann. of Math. (2) 152 (2000), no. 2, 645-658. MR 1804533 (2002c:58032), https://doi.org/10.2307/2661394
  • [42] Piotr Nayar, On polynomially bounded harmonic functions on the $ \mathbb{Z}^d$ lattice, Bull. Pol. Acad. Sci. Math. 57 (2009), no. 3-4, 231-242. MR 2581089 (2011g:31015), https://doi.org/10.4064/ba57-3-5
  • [43] T. Réti, E. Bitay, and Z. Kosztolányi, On the polyhedral graphs with positive combinatorial curvature, Acta Polytechnica Hungarica 2 (2005), no. 2, 19-37.
  • [44] David A. Stone, A combinatorial analogue of a theorem of Myers, Illinois J. Math. 20 (1976), no. 1, 12-21. MR 0410602 (53 #14350a)
  • [45] Liang Sun and Xingxing Yu, Positively curved cubic plane graphs are finite, J. Graph Theory 47 (2004), no. 4, 241-274. MR 2096789 (2006a:05047), https://doi.org/10.1002/jgt.20026
  • [46] Chiung-Jue Sung, Luen-Fai Tam, and Jiaping Wang, Spaces of harmonic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 789-806. MR 1766105 (2001i:31013), https://doi.org/10.1112/S0024610700008759
  • [47] Luen-Fai Tam, A note on harmonic forms on complete manifolds, Proc. Amer. Math. Soc. 126 (1998), no. 10, 3097-3108. MR 1459152 (99a:53047), https://doi.org/10.1090/S0002-9939-98-04474-8
  • [48] Jiaping Wang, Linear growth harmonic functions on complete manifolds, Comm. Anal. Geom. 3 (1995), no. 3-4, 683-698. MR 1371213 (96m:53044)
  • [49] Wolfgang Woess, A note on tilings and strong isoperimetric inequality, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 385-393. MR 1636552 (99f:52026), https://doi.org/10.1017/S0305004197002429
  • [50] Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. MR 0431040 (55 #4042)
  • [51] Shing-Tung Yau, Nonlinear analysis in geometry, Enseign. Math. (2) 33 (1987), no. 1-2, 109-158. MR 896385 (88g:58003)
  • [52] Shing-Tung Yau, Open problems in geometry, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1-28. MR 1216573 (94k:53001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 31C05, 05C81, 05C63

Retrieve articles in all journals with MSC (2010): 31C05, 05C81, 05C63


Additional Information

Bobo Hua
Affiliation: Max Planck Institute for Mathematics in the Sciences, Leipzig, 04103, Germany
Address at time of publication: School of Mathematical Sciences, LMNS, Fudan University, Shanghai 200433, People’s Republic of China; Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
Email: bobohua@mis.mpg.de, bobohua@fudan.edu.cn

Jürgen Jost
Affiliation: Max Planck Institute for Mathematics in the Sciences, Leipzig, 04103, Germany
Email: jost@mis.mpg.de

DOI: https://doi.org/10.1090/S0002-9947-2014-06167-9
Received by editor(s): September 28, 2012
Published electronically: November 24, 2014
Additional Notes: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 267087
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society