Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Caldero-Chapoton algebras


Authors: Giovanni Cerulli Irelli, Daniel Labardini-Fragoso and Jan Schröer
Journal: Trans. Amer. Math. Soc. 367 (2015), 2787-2822
MSC (2010): Primary 13F60; Secondary 16G10, 16G20
DOI: https://doi.org/10.1090/S0002-9947-2014-06175-8
Published electronically: November 12, 2014
MathSciNet review: 3301882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the representation theory of quivers with potential introduced by Derksen, Weyman and Zelevinsky and by work of Caldero and Chapoton, who gave explicit formulae for the cluster variables of cluster algebras of Dynkin type, we associate a Caldero-Chapoton algebra $ \mathcal {A}_\Lambda $ to any (possibly infinite-dimensional) basic algebra $ \Lambda $. By definition, $ \mathcal {A}_\Lambda $ is (as a vector space) generated by the Caldero-Chapoton functions $ C_\Lambda (\mathcal {M})$ of the decorated representations $ \mathcal {M}$ of $ \Lambda $. If $ \Lambda = \mathcal {P}(Q,W)$ is the Jacobian algebra defined by a 2-acyclic quiver $ Q$ with non-degenerate potential $ W$, then we have $ \mathcal {A}_Q \subseteq \mathcal {A}_\Lambda \subseteq \mathcal {A}_Q^{\mathrm {up}}$, where $ \mathcal {A}_Q$ and $ \mathcal {A}_Q^{\mathrm {up}}$ are the cluster algebra and the upper cluster algebra associated to $ Q$. The set $ \mathcal {B}_\Lambda $ of generic Caldero-Chapoton functions is parametrized by the strongly reduced components of the varieties of representations of the Jacobian algebra $ \mathcal {P}(Q,W)$ and was introduced by Geiss, Leclerc and Schröer. Plamondon parametrized the strongly reduced components for finite-dimensional basic algebras. We generalize this to arbitrary basic algebras. Furthermore, we prove a decomposition theorem for strongly reduced components. We define $ \mathcal {B}_\Lambda $ for arbitrary $ \Lambda $, and we conjecture that $ \mathcal {B}_\Lambda $ is a basis of the Caldero-Chapoton algebra $ \mathcal {A}_\Lambda $. Thanks to the decomposition theorem, all elements of $ \mathcal {B}_\Lambda $ can be seen as generalized cluster monomials. As another application, we obtain a new proof for the sign-coherence of $ g$-vectors.


References [Enhancements On Off] (What's this?)

  • [A] Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525-2590 (English, with English and French summaries). MR 2640929 (2011c:16026)
  • [AR] Maurice Auslander and Idun Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), no. 2, 280-301. MR 784524 (86i:16032)
  • [ARS] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671 (98e:16011)
  • [ASS] Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, Techniques of representation theory. London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. MR 2197389 (2006j:16020)
  • [BFZ] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1-52. MR 2110627 (2005i:16065), https://doi.org/10.1215/S0012-7094-04-12611-9
  • [CC] Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595-616. MR 2250855 (2008b:16015), https://doi.org/10.4171/CMH/65
  • [C] Giovanni Cerulli Irelli, Cluster algebras of type $ A_{2}^{(1)}$, Algebr. Represent. Theory 15 (2012), no. 5, 977-1021. MR 2969285, https://doi.org/10.1007/s10468-011-9275-5
  • [CBS] William Crawley-Boevey and Jan Schröer, Irreducible components of varieties of modules, J. Reine Angew. Math. 553 (2002), 201-220. MR 1944812 (2004a:16020), https://doi.org/10.1515/crll.2002.100
  • [DW] Harm Derksen and Jerzy Weyman, On the canonical decomposition of quiver representations, Compositio Math. 133 (2002), no. 3, 245-265. MR 1930979 (2003h:16017), https://doi.org/10.1023/A:1020007100426
  • [DWZ1] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.) 14 (2008), no. 1, 59-119. MR 2480710 (2010b:16021), https://doi.org/10.1007/s00029-008-0057-9
  • [DWZ2] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations. II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749-790. MR 2629987 (2012c:16044), https://doi.org/10.1090/S0894-0347-10-00662-4
  • [FZ1] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529 (electronic). MR 1887642 (2003f:16050), https://doi.org/10.1090/S0894-0347-01-00385-X
  • [FZ2] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121. MR 2004457 (2004m:17011), https://doi.org/10.1007/s00222-003-0302-y
  • [FK] Changjian Fu and Bernhard Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. Amer. Math. Soc. 362 (2010), no. 2, 859-895. MR 2551509 (2011b:13076), https://doi.org/10.1090/S0002-9947-09-04979-4
  • [G] Peter Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Math. Lecture Notes, No. 9) Carleton Univ., Ottawa, Ont., 1974, pp. 23. MR 0376769 (51 #12944)
  • [GLaS] C. Geiß, D. Labardini-Fragoso, and J. Schröer, preprint in preparation.
  • [GLS] Christof Geiss, Bernard Leclerc, and Jan Schröer, Generic bases for cluster algebras and the Chamber ansatz, J. Amer. Math. Soc. 25 (2012), no. 1, 21-76. MR 2833478 (2012g:13041), https://doi.org/10.1090/S0894-0347-2011-00715-7
  • [GS] Christof Geiss and Jan Schröer, Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1953-1962 (electronic). MR 2115084 (2006c:16023), https://doi.org/10.1090/S0002-9947-04-03555-X
  • [IR] O. Iyama and I. Reiten, $ \tau $-tilting modules, talk in Trondheim on 28.03.2012.
  • [K] V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), no. 1, 141-162. MR 677715 (85b:17003), https://doi.org/10.1016/0021-8693(82)90105-3
  • [La1] Daniel Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 797-839. MR 2500873 (2010b:16033), https://doi.org/10.1112/plms/pdn051
  • [La2] D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part II: Arc representations, Preprint (2009), 52pp., arXiv:0909.4100v2
  • [MRZ] Robert Marsh, Markus Reineke, and Andrei Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171-4186. MR 1990581 (2004g:52014), https://doi.org/10.1090/S0002-9947-03-03320-8
  • [Pa] Yann Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2221-2248 (English, with English and French summaries). MR 2473635 (2009k:18013)
  • [P1] Pierre-Guy Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compos. Math. 147 (2011), no. 6, 1921-1934. MR 2862067, https://doi.org/10.1112/S0010437X11005483
  • [P2] P.-G. Plamondon, Generic bases for cluster algebras from the cluster category, Int. Math. Res. Notices IMRN 2013, no. 10, 2368-2420. MR 3061943
  • [Sche] S. Scherotzke, Generalized clusters for acyclic quivers, preprint (2012).
  • [Scho] Aidan Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), no. 1, 46-64. MR 1162487 (93d:16014), https://doi.org/10.1112/plms/s3-65.1.46
  • [ZZ] Y. Zhou and B. Zhu, Cluster algebras arising from cluster tubes, J. London Math. Soc. (2) 89 (2014), no. 3, 703-723. MR 3217645

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13F60, 16G10, 16G20

Retrieve articles in all journals with MSC (2010): 13F60, 16G10, 16G20


Additional Information

Giovanni Cerulli Irelli
Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Email: cerulli.math@googlemail.com

Daniel Labardini-Fragoso
Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Email: labardini@matem.unam.mx

Jan Schröer
Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Email: schroer@math.uni-bonn.de

DOI: https://doi.org/10.1090/S0002-9947-2014-06175-8
Received by editor(s): December 4, 2012
Received by editor(s) in revised form: April 30, 2013
Published electronically: November 12, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society