Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Matrix factorizations in higher codimension


Authors: Jesse Burke and Mark E. Walker
Journal: Trans. Amer. Math. Soc. 367 (2015), 3323-3370
MSC (2010): Primary 13D02, 14F05, 13D09
DOI: https://doi.org/10.1090/S0002-9947-2015-06323-5
Published electronically: January 20, 2015
MathSciNet review: 3314810
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We observe that there is an equivalence between the singularity category of an affine complete intersection and the homotopy category of matrix factorizations over a related scheme. This relies in part on a theorem of Orlov. Using this equivalence, we give a geometric construction of the ring of cohomology operators, and a generalization of the theory of support varieties, which we call stable support sets. We settle a question of Avramov about which stable support sets can arise for a given complete intersection ring. We also use the equivalence to construct a projective resolution of a module over a complete intersection ring from a matrix factorization, generalizing the well-known result in the hypersurface case.


References [Enhancements On Off] (What's this?)

  • [1] Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655 (50 #7133)
  • [2] Luchezar L. Avramov, Obstructions to the existence of multiplicative structures on minimal free resolutions, Amer. J. Math. 103 (1981), no. 1, 1-31. MR 601460 (82m:13011), https://doi.org/10.2307/2374187
  • [3] Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, J. Algebra 230 (2000), no. 1, 24-67. MR 1774757 (2001g:13032), https://doi.org/10.1006/jabr.1999.7953
  • [4] Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), no. 2, 285-318. MR 1794064 (2001j:13017), https://doi.org/10.1007/s002220000090
  • [5] Luchezar L. Avramov and Srikanth B. Iyengar, Constructing modules with prescribed cohomological support, Illinois J. Math. 51 (2007), no. 1, 1-20. MR 2346182 (2008j:13036)
  • [6] Luchezar L. Avramov and Alex Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002), no. 2, 393-440. MR 1912056 (2003g:16009), https://doi.org/10.1112/S0024611502013527
  • [7] Luchezar L. Avramov and Li-Chuan Sun, Cohomology operators defined by a deformation, J. Algebra 204 (1998), no. 2, 684-710. MR 1624432 (2000e:13021), https://doi.org/10.1006/jabr.1997.7317
  • [8] Dave Benson, Srikanth B. Iyengar, and Henning Krause, Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 573-619 (English, with English and French summaries). MR 2489634 (2009k:18012)
  • [9] Dave Benson, Srikanth B. Iyengar, and Henning Krause, Stratifying triangulated categories, J. Topol. 4 (2011), no. 3, 641-666. MR 2832572 (2012m:18016), https://doi.org/10.1112/jtopol/jtr017
  • [10] Petter Andreas Bergh, On support varieties for modules over complete intersections, Proc. Amer. Math. Soc. 135 (2007), no. 12, 3795-3803 (electronic). MR 2341929 (2008g:13022), https://doi.org/10.1090/S0002-9939-07-09009-0
  • [11] Ragnar-Olaf Buchweitz,
    Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings.
    Unpublished manuscript, 1987.
  • [12] Ragnar-Olaf Buchweitz,
    Complete resolutions over complete intersections.
    Oberwolfach Rep., 8 (2011), no. 1, 543-546.
    Representation theory of quivers and finite dimensional algebras.
  • [13] Jesse Burke and Mark E. Walker, Matrix factorizations over projective schemes, Homology Homotopy Appl. 14 (2012), no. 2, 37-61. MR 3007084
  • [14] Lars Winther Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. MR 1799866 (2002e:13032)
  • [15] David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35-64. MR 570778 (82d:13013), https://doi.org/10.2307/1999875
  • [16] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 0163911 (29 #1210)
  • [17] Tor H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. MR 0364232 (51 #487)
  • [18] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR 0222093 (36 #5145)
  • [19] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [20] M. Umut Isik,
    Equivalence of the derived category of a variety with a singularity category.
    arXiv:1011.1484.
  • [21] Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128-1162. MR 2157133 (2006e:18019), https://doi.org/10.1112/S0010437X05001375
  • [22] Kevin H. Lin and Daniel Pomerleano,
    Global matrix factorizations, Math. Res. Lett. 20 (2013), no. 1, 91-106. MR 3126725
  • [23] David Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285 (35 #187)
  • [24] Dmitri Orlov, Matrix factorizations for nonaffine LG-models, Math. Ann. 353 (2012), no. 1, 95-108. MR 2910782, https://doi.org/10.1007/s00208-011-0676-x
  • [25] D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240-262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3 (246) (2004), 227-248. MR 2101296 (2006i:81173)
  • [26] D. O. Orlov, Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb. 197 (2006), no. 12, 117-132 (Russian, with Russian summary); English transl., Sb. Math. 197 (2006), no. 11-12, 1827-1840. MR 2437083 (2009g:14013), https://doi.org/10.1070/SM2006v197n12ABEH003824
  • [27] Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 503-531. MR 2641200 (2011c:14050), https://doi.org/10.1007/978-0-8176-4747-6_16
  • [28] Alexander Polishchuk and Arkady Vaintrob,
    Matrix factorizations and singularity categories for stacks, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2609-2642. MR 3112502
  • [29] Leonid Positselski,
    Coherent analogues of matrix factorizations and relative singularity categories.
    arXiv:1102.0261.
  • [30] Daniel Quillen, Higher algebraic $ K$-theory. I, Algebraic $ K$-theory, I: Higher $ K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 85-147. Lecture Notes in Math., Vol. 341. MR 0338129 (49 #2895)
  • [31] Ian Shipman, A geometric approach to Orlov's theorem, Compos. Math. 148 (2012), no. 5, 1365-1389. MR 2982435, https://doi.org/10.1112/S0010437X12000255
  • [32] Greg Stevenson,
    Subcategories of singularity categories via tensor actions, Compos. Math. 150 (2014), no. 2, 229-272. MR 3177268
  • [33] Greg Stevenson,
    Support theory via actions of tensor triangulated categories, J. Reine Angew. Math. 681 (2013), 219-254. MR 3181496
  • [34] Oana Veliche, Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1257-1283 (electronic). MR 2187653 (2007a:16012), https://doi.org/10.1090/S0002-9947-05-03771-2
  • [35] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13D02, 14F05, 13D09

Retrieve articles in all journals with MSC (2010): 13D02, 14F05, 13D09


Additional Information

Jesse Burke
Affiliation: Department of Mathematics, Universität Bielefeld, 33501 Bielefeld, Germany
Email: jburke@math.uni-bielefeld.de

Mark E. Walker
Affiliation: Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588
Email: mwalker5@math.unl.edu

DOI: https://doi.org/10.1090/S0002-9947-2015-06323-5
Received by editor(s): November 20, 2012
Received by editor(s) in revised form: May 2, 2013
Published electronically: January 20, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society