Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Noncommutative Boyd interpolation theorems


Author: Sjoerd Dirksen
Journal: Trans. Amer. Math. Soc. 367 (2015), 4079-4110
MSC (2010): Primary 46B70, 46L52, 46L53
DOI: https://doi.org/10.1090/S0002-9947-2014-06185-0
Published electronically: December 10, 2014
MathSciNet review: 3324921
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new, elementary proof of Boyd's interpolation theorem. Our approach naturally yields a noncommutative version of this result and even allows for the interpolation of certain operators on $ \ell ^1$-valued noncommutative symmetric spaces. By duality we may interpolate several well-known noncommutative maximal inequalities. In particular we obtain a version of Doob's maximal inequality and the dual Doob inequality for noncommutative symmetric spaces. We apply our results to prove the Burkholder-Davis-Gundy and Burkholder-Rosenthal inequalities for noncommutative martingales in these spaces.


References [Enhancements On Off] (What's this?)

  • [1] Turdebek N. Bekjan and Zeqian Chen, Interpolation and $ \Phi $-moment inequalities of noncommutative martingales, Probab. Theory Related Fields 152 (2012), no. 1-2, 179-206. MR 2875756, https://doi.org/10.1007/s00440-010-0319-2
  • [2] T. Bekjan, Z. Chen, and A. Osekowski,
    Noncommutative moment maximal inequalities.
    arXiv: 1108.2795
  • [3] A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. MR 0133653 (24 #A3479)
  • [4] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802 (89e:46001)
  • [5] David W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254. MR 0412788 (54 #909)
  • [6] A.-P. Calderón, Spaces between $ L^{1}$ and $ L^{\infty }$ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299. MR 0203444 (34 #3295)
  • [7] Sjoerd Dirksen, Ben de Pagter, Denis Potapov, and Fedor Sukochev, Rosenthal inequalities in noncommutative symmetric spaces, J. Funct. Anal. 261 (2011), no. 10, 2890-2925. MR 2832586 (2012k:46073), https://doi.org/10.1016/j.jfa.2011.07.015
  • [8] S. Dirksen and É. Ricard, Some remarks on noncommutative Khintchine inequalities, Bull. London Math. Soc. 45 (2013), no. 3, 618-624. MR 3065031
  • [9] Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989), no. 4, 583-597. MR 1004176 (90j:46054), https://doi.org/10.1007/BF01215160
  • [10] Peter G. Dodds, Theresa K. Dodds, and Ben de Pagter, Fully symmetric operator spaces, Integral Equations Operator Theory 15 (1992), no. 6, 942-972. MR 1188788 (94j:46062), https://doi.org/10.1007/BF01203122
  • [11] Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), no. 2, 717-750. MR 1113694 (94a:46093), https://doi.org/10.2307/2154295
  • [12] P. Dodds, B. de Pagter, and F. Sukochev,
    Noncommutative integration.
    Work in progress.
  • [13] Thierry Fack and Hideki Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), no. 2, 269-300. MR 840845 (87h:46122)
  • [14] Ying Hu, Noncommutative extrapolation theorems and applications, Illinois J. Math. 53 (2009), no. 2, 463-482. MR 2594639 (2011c:46137)
  • [15] Yong Jiao, Burkholder's inequalities in noncommutative Lorentz spaces, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2431-2441. MR 2607873 (2011f:46080), https://doi.org/10.1090/S0002-9939-10-10267-6
  • [16] Yong Jiao, Martingale inequalities in noncommutative symmetric spaces, Arch. Math. (Basel) 98 (2012), no. 1, 87-97. MR 2885535, https://doi.org/10.1007/s00013-011-0343-1
  • [17] Marius Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149-190. MR 1916654 (2003k:46097), https://doi.org/10.1515/crll.2002.061
  • [18] Marius Junge and Quanhua Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31 (2003), no. 2, 948-995. MR 1964955 (2004f:46078), https://doi.org/10.1214/aop/1048516542
  • [19] Marius Junge and Quanhua Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), no. 2, 385-439. MR 2276775 (2007k:46109), https://doi.org/10.1090/S0894-0347-06-00533-9
  • [20] N. J. Kalton, Compact and strictly singular operators on certain function spaces, Arch. Math. (Basel) 43 (1984), no. 1, 66-78. MR 758342 (85m:47027), https://doi.org/10.1007/BF01193613
  • [21] N. J. Kalton, N. T. Peck, and James W. Roberts, An $ F$-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR 808777 (87c:46002)
  • [22] N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81-121. MR 2431251 (2009i:46118), https://doi.org/10.1515/CRELLE.2008.059
  • [23] S. Kreĭn, Y. Petunīn, and E. Semënov,
    Interpolation of linear operators,
    American Mathematical Society, Providence, R.I., 1982. MR 0649411 (84j:46103)
  • [24] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. MR 540367 (81c:46001)
  • [25] Françoise Lust-Piquard, Inégalités de Khintchine dans $ C_p\;(1<p<\infty )$, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 7, 289-292 (French, with English summary). MR 859804 (87j:47032)
  • [26] Françoise Lust-Piquard and Gilles Pisier, Noncommutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), no. 2, 241-260. MR 1150376 (94b:46011), https://doi.org/10.1007/BF02384340
  • [27] Lech Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234 (1985), 49. MR 820076 (87k:46059)
  • [28] J. Marcinkiewicz, Sur l'interpolation d'opérations, C. R. Acad. Sci., Paris, 208:1272-1273, 1939.
  • [29] Stephen J. Montgomery-Smith, The Hardy operator and Boyd indices, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) Lecture Notes in Pure and Appl. Math., vol. 175, Dekker, New York, 1996, pp. 359-364. MR 1358172 (97a:46037)
  • [30] Edward Nelson, Notes on non-commutative integration, J. Functional Analysis 15 (1974), 103-116. MR 0355628 (50 #8102)
  • [31] Gilles Pisier, Non-commutative vector valued $ L_p$-spaces and completely $ p$-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908 (2000a:46108)
  • [32] Gilles Pisier and Quanhua Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), no. 3, 667-698. MR 1482934 (98m:46079), https://doi.org/10.1007/s002200050224
  • [33] E. M. Stein and Guido Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284. MR 0107163 (21 #5888)
  • [34] Q. Xu, Operator spaces and noncommutative $ L_p$, Nankai University summer school lecture notes, 2007.
  • [35] Quan Hua Xu, Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 541-563. MR 1094753 (92g:46036), https://doi.org/10.1017/S030500410006998X
  • [36] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operations, J. Math. Pures Appl. (9) 35 (1956), 223-248. MR 0080887 (18,321d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46B70, 46L52, 46L53

Retrieve articles in all journals with MSC (2010): 46B70, 46L52, 46L53


Additional Information

Sjoerd Dirksen
Affiliation: Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Address at time of publication: Department of Mathematics, RWTH Aachen University, 52056 Aachen, Germany
Email: sjoerd.dirksen@hcm.uni-bonn.de, dirksen@mathc.rwth-aachen.de

DOI: https://doi.org/10.1090/S0002-9947-2014-06185-0
Keywords: Boyd interpolation theorem, noncommutative symmetric spaces, $\Phi$-moment inequalities, Doob maximal inequality, Burkholder-Davis-Gundy inequalities, Burkholder-Rosenthal inequalities
Received by editor(s): April 12, 2012
Received by editor(s) in revised form: March 12, 2013
Published electronically: December 10, 2014
Additional Notes: This research was supported by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO) and the Hausdorff Center for Mathematics
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society