Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dyck's surfaces, systoles, and capacities


Authors: Mikhail G. Katz and Stéphane Sabourau
Journal: Trans. Amer. Math. Soc. 367 (2015), 4483-4504
MSC (2010): Primary 53C23; Secondary 30F10, 58J60
DOI: https://doi.org/10.1090/S0002-9947-2014-06216-8
Published electronically: October 10, 2014
MathSciNet review: 3324936
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an optimal systolic inequality for nonpositively curved Dyck's surfaces. The extremal surface is flat with eight conical singularities, six of angle $ \vartheta $ and two of angle  $ 9 \pi -3 \vartheta $ for a suitable $ \vartheta $ with $ \cos (\vartheta )\in \mathbb{Q}(\sqrt {19})$. Relying on some delicate capacity estimates, we also show that the extremal surface is not conformally equivalent to the hyperbolic Dyck's surface with maximal systole, yielding a first example of systolic extremality with this behavior.


References [Enhancements On Off] (What's this?)

  • [1] Victor Bangert and Mikhail Katz, Stable systolic inequalities and cohomology products, Comm. Pure Appl. Math. 56 (2003), no. 7, 979-997. Dedicated to the memory of Jürgen K. Moser. MR 1990484 (2004g:53047), https://doi.org/10.1002/cpa.10082
  • [2] Victor Bangert and Mikhail Katz, An optimal Loewner-type systolic inequality and harmonic one-forms of constant norm, Comm. Anal. Geom. 12 (2004), no. 3, 703-732. MR 2128608 (2005k:53035)
  • [3] C. Bavard, Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), no. 3, 439-441 (French). MR 842624 (87i:53059), https://doi.org/10.1007/BF01457227
  • [4] Christophe Bavard, Inégalités isosystoliques conformes, Comment. Math. Helv. 67 (1992), no. 1, 146-166 (French). MR 1144618 (93f:53033), https://doi.org/10.1007/BF02566493
  • [5] Christian Blatter, Über Extremallängen auf geschlossenen Flächen, Comment. Math. Helv. 35 (1961), 153-168 (German). MR 0131539 (24 #A1389)
  • [6] Christian Blatter, Zur Riemannschen Geometrie im Grossen auf dem Möbiusband, Compositio Math. 15 (1961), 88-107 (1961) (German). MR 0140060 (25 #3484)
  • [7] Oskar Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math. 10 (1887), no. 1, 47-70. MR 1505464, https://doi.org/10.2307/2369402
  • [8] J. A. Bujalance, Hyperelliptic compact nonorientable Klein surfaces without boundary, Kodai Math. J. 12 (1989), no. 1, 1-8. MR 987136 (90a:30128), https://doi.org/10.2996/kmj/1138038984
  • [9] E. Bujalance and D. Singerman, The symmetry type of a Riemann surface, Proc. London Math. Soc. (3) 51 (1985), no. 3, 501-519. MR 805719 (88a:30094), https://doi.org/10.1112/plms/s3-51.3.501
  • [10] D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal. 4 (1994), no. 3, 259-269. MR 1274115 (95h:53049), https://doi.org/10.1007/BF01896241
  • [11] D. Burago and S. Ivanov, On asymptotic volume of tori, Geom. Funct. Anal. 5 (1995), no. 5, 800-808. MR 1354290 (96h:53041), https://doi.org/10.1007/BF01897051
  • [12] Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition. MR 2742784 (2011i:58047)
  • [13] P. Buser and P. Sarnak, On the period matrix of a Riemann surface of large genus, Invent. Math. 117 (1994), no. 1, 27-56. With an appendix by J. H. Conway and N. J. A. Sloane. MR 1269424 (95i:22018), https://doi.org/10.1007/BF01232233
  • [14] Eugenio Calabi, Extremal isosystolic metrics for compact surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 167-204 (English, with English and French summaries). MR 1427758 (97k:53037)
  • [15] H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765 (93a:30047)
  • [16] Matthieu Gendulphe, Paysage Systolique Des Surfaces Hyperboliques Compactes De Caracteristique -1. See arXiv:math/0508036
  • [17] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Reprint of the 2001 English edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 2307192 (2007k:53049)
  • [18] Charles Horowitz, Karin Usadi Katz, and Mikhail G. Katz, Loewner's torus inequality with isosystolic defect, J. Geom. Anal. 19 (2009), no. 4, 796-808. MR 2538936 (2011a:53061), https://doi.org/10.1007/s12220-009-9090-y
  • [19] Felix Jenni, Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv. 59 (1984), no. 2, 193-203 (German). MR 749104 (85i:58118), https://doi.org/10.1007/BF02566345
  • [20] Mikhail G. Katz, Systolic geometry and topology, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, 2007. With an appendix by Jake P. Solomon. MR 2292367 (2008h:53063)
  • [21] Mikhail G. Katz and Stéphane Sabourau, An optimal systolic inequality for CAT$ (0)$ metrics in genus two, Pacific J. Math. 227 (2006), no. 1, 95-107. MR 2247874 (2007e:53043), https://doi.org/10.2140/pjm.2006.227.95
  • [22] Mikhail G. Katz and Stéphane Sabourau, Hyperellipticity and systoles of Klein surfaces, Geom. Dedicata 159 (2012), 277-293. MR 2944532, https://doi.org/10.1007/s10711-011-9659-z
  • [23] C. Klein, A. Kokotov, and D. Korotkin, Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces, Math. Z. 261 (2009), no. 1, 73-108. MR 2452638 (2009k:32012), https://doi.org/10.1007/s00209-008-0314-9
  • [24] Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604 (96f:14029)
  • [25] Bjoern Muetzel, Inequalities for the capacity of non-contractible annuli on cylinders of constant and variable negative curvature, Geom. Dedicata 166 (2013), 129-145. MR 3101163, https://doi.org/10.1007/s10711-012-9788-z
  • [26] Hugo Parlier, Fixed point free involutions on Riemann surfaces, Israel J. Math. 166 (2008), 297-311. MR 2430437 (2010k:30050), https://doi.org/10.1007/s11856-008-1032-z
  • [27] P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55-71. MR 0048886 (14,87e)
  • [28] Takashi Sakai, A proof of the isosystolic inequality for the Klein bottle, Proc. Amer. Math. Soc. 104 (1988), no. 2, 589-590. MR 962833 (89m:53068), https://doi.org/10.2307/2047017
  • [29] P. Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geom. Funct. Anal. 3 (1993), no. 6, 564-631. MR 1250756 (95f:30060), https://doi.org/10.1007/BF01896258
  • [30] Marc Troyanov, Les surfaces euclidiennes à singularités coniques, Enseign. Math. (2) 32 (1986), no. 1-2, 79-94 (French). MR 850552 (87i:30079)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C23, 30F10, 58J60

Retrieve articles in all journals with MSC (2010): 53C23, 30F10, 58J60


Additional Information

Mikhail G. Katz
Affiliation: Department of Mathematics, Bar Ilan University, Ramat Gan 52900, Israel
Email: katzmik@macs.biu.ac.il

Stéphane Sabourau
Affiliation: Laboratoire d’Analyse et Mathématiques Appliquées, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94010 Créteil, France
Email: stephane.sabourau@u-pec.fr

DOI: https://doi.org/10.1090/S0002-9947-2014-06216-8
Keywords: Systole, optimal systolic inequality, extremal metric, nonpositively curved surface, Riemann surface, Dyck's surface, hyperellipticity, antiholomorphic involution, conformal structure, capacity
Received by editor(s): February 20, 2013
Received by editor(s) in revised form: June 3, 2013, and January 6, 2014
Published electronically: October 10, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society