Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Optimal regularity of the convex envelope


Authors: Guido De Philippis and Alessio Figalli
Journal: Trans. Amer. Math. Soc. 367 (2015), 4407-4422
MSC (2010): Primary 49J52
DOI: https://doi.org/10.1090/S0002-9947-2014-06306-X
Published electronically: July 21, 2014
MathSciNet review: 3324933
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove sharp regularity results for the convex envelope of a continuous function inside a convex domain.


References [Enhancements On Off] (What's this?)

  • [1] J. Benoist and J.-B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal. 27 (1996), no. 6, 1661-1679. MR 1416513 (97k:49026), https://doi.org/10.1137/S0036141094265936
  • [2] Patrick Bernard, Lasry-Lions regularization and a lemma of Ilmanen, Rend. Semin. Mat. Univ. Padova 124 (2010), 221-229. MR 2752687 (2012d:37191), https://doi.org/10.4171/RSMUP/124-15
  • [3] Luis A. Caffarelli, Interior $ W^{2,p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135-150. MR 1038360 (91f:35059), https://doi.org/10.2307/1971510
  • [4] Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007 (96h:35046)
  • [5] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 19-27. MR 864651 (87m:35103), https://doi.org/10.4171/RMI/23
  • [6] Pierre Cardaliaguet, Front propagation problems with nonlocal terms. II, J. Math. Anal. Appl. 260 (2001), no. 2, 572-601. MR 1845570 (2002f:35116), https://doi.org/10.1006/jmaa.2001.7483
  • [7] Guido De Philippis and Alessio Figalli, Second order stability for the Monge-Ampère equation and strong Sobolev convergence of optimal transport maps, Anal. PDE 6 (2013), no. 4, 993-1000. MR 3092736, https://doi.org/10.2140/apde.2013.6.993
  • [8] A. Fathi and M. Zavidovique, Ilmanen's lemma on insertion of $ C^{1,1}$ functions, Rend. Semin. Mat. Univ. Padova 124 (2010), 203-219. MR 2752686 (2012i:58004), https://doi.org/10.4171/RSMUP/124-14
  • [9] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364 (2001k:35004)
  • [10] A. Griewank and P. J. Rabier, On the smoothness of convex envelopes, Trans. Amer. Math. Soc. 322 (1990), no. 2, 691-709. MR 986024 (91k:49021), https://doi.org/10.2307/2001721
  • [11] Bernd Kirchheim and Jan Kristensen, Differentiability of convex envelopes, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 8, 725-728 (English, with English and French summaries). MR 1868942 (2002g:49024), https://doi.org/10.1016/S0764-4442(01)02117-6
  • [12] Tom Ilmanen, The level-set flow on a manifold, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 193-204. MR 1216585 (94d:58040)
  • [13] Adam M. Oberman, The convex envelope is the solution of a nonlinear obstacle problem, Proc. Amer. Math. Soc. 135 (2007), no. 6, 1689-1694 (electronic). MR 2286077 (2007k:35184), https://doi.org/10.1090/S0002-9939-07-08887-9
  • [14] Adam M. Oberman and Luis Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5871-5886. MR 2817413 (2012e:35064), https://doi.org/10.1090/S0002-9947-2011-05240-2
  • [15] R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876 (97m:49001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 49J52

Retrieve articles in all journals with MSC (2010): 49J52


Additional Information

Guido De Philippis
Affiliation: Scuola Normale Superiore, p.za dei Cavalieri 7, I-56126 Pisa, Italy
Email: guido.dephilippis@sns.it

Alessio Figalli
Affiliation: Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin, Texas 78712
Email: figalli@math.utexas.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06306-X
Received by editor(s): January 31, 2013
Received by editor(s) in revised form: February 20, 2013, and October 17, 2013
Published electronically: July 21, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society