Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Non-formal co-symplectic manifolds


Authors: Giovanni Bazzoni, Marisa Fernández and Vicente Muñoz
Journal: Trans. Amer. Math. Soc. 367 (2015), 4459-4481
MSC (2010): Primary 53C15, 55S30; Secondary 53D35, 55P62, 57R17
DOI: https://doi.org/10.1090/S0002-9947-2014-06361-7
Published electronically: September 4, 2014
MathSciNet review: 3324935
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the formality of the mapping torus of an orientation-preserving diffeomorphism of a manifold. In particular, we give conditions under which a mapping torus has a non-zero Massey product. As an application we prove that there are non-formal compact co-symplectic manifolds of dimension $ m$ and with first Betti number $ b$ if and only if $ m=3$ and $ b \geq 2$, or $ m \geq 5$ and $ b \geq 1$. Explicit examples for each one of these cases are given.


References [Enhancements On Off] (What's this?)

  • [1] I. K. Babenko and I. A. Taĭmanov, On nonformal simply connected symplectic manifolds, Sibirsk. Mat. Zh. 41 (2000), no. 2, 253-269, i (Russian, with Russian summary); English transl., Siberian Math. J. 41 (2000), no. 2, 204-217. MR 1762178 (2001g:57051), https://doi.org/10.1007/BF02674589
  • [2] Giovanni Bazzoni and Vicente Muñoz, Classification of minimal algebras over any field up to dimension 6, Trans. Amer. Math. Soc. 364 (2012), no. 2, 1007-1028. MR 2846361 (2012i:55010), https://doi.org/10.1090/S0002-9947-2011-05471-1
  • [3] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331-345. MR 0226538 (37 #2127)
  • [4] David E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976. MR 0467588 (57 #7444)
  • [5] David E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1874240 (2002m:53120)
  • [6] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304 (83i:57016)
  • [7] D. Chinea, M. de León, and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl. (9) 72 (1993), no. 6, 567-591. MR 1249410 (95c:53036)
  • [8] Luis A. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), no. 3, 375-380. MR 842431 (87j:53051), https://doi.org/10.1016/0040-9383(86)90050-9
  • [9] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245-274. MR 0382702 (52 #3584)
  • [10] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847 (2002d:55014)
  • [11] Yves Félix, John Oprea, and Daniel Tanré, Algebraic models in geometry, Oxford Graduate Texts in Mathematics, vol. 17, Oxford University Press, Oxford, 2008. MR 2403898 (2009a:55006)
  • [12] Marisa Fernández, Alfred Gray, and John W. Morgan, Compact symplectic manifolds with free circle actions, and Massey products, Michigan Math. J. 38 (1991), no. 2, 271-283. MR 1098863 (92e:57049), https://doi.org/10.1307/mmj/1029004333
  • [13] Marisa Fernández and Vicente Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005), no. 1, 149-175. MR 2136647 (2006a:53098), https://doi.org/10.1007/s00209-004-0747-8
  • [14] Marisa Fernández and Vicente Muñoz, Non-formal compact manifolds with small Betti numbers, Contemporary geometry and related topics, Univ. Belgrade Fac. Math., Belgrade, 2006, pp. 231-246. MR 2963633
  • [15] Marisa Fernández and Vicente Muñoz, An 8-dimensional nonformal, simply connected, symplectic manifold, Ann. of Math. (2) 167 (2008), no. 3, 1045-1054. MR 2415392 (2009j:53114), https://doi.org/10.4007/annals.2008.167.1045
  • [16] Anna Fino and Luigi Vezzoni, Some results on cosymplectic manifolds, Geom. Dedicata 151 (2011), 41-58. MR 2780737 (2012c:53042), https://doi.org/10.1007/s10711-010-9518-3
  • [17] Samuel I. Goldberg and Kentaro Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. MR 0251678 (40 #4905)
  • [18] Akio Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289-331 (1960). MR 0124918 (23 #A2226)
  • [19] Hongjun Li, Topology of co-symplectic/co-Kähler manifolds, Asian J. Math. 12 (2008), no. 4, 527-543. MR 2481690 (2010c:53126), https://doi.org/10.4310/AJM.2008.v12.n4.a7
  • [20] Paulette Libermann, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géom. Diff. Globale (Bruxelles, 1958) Centre Belge Rech. Math., Louvain, 1959, pp. 37-59 (French). MR 0119153 (22 #9919)
  • [21] L. Magnin, Sur les algèbres de Lie nilpotentes de dimension $ \leq 7$, J. Geom. Phys. 3 (1986), no. 1, 119-144 (French, with English summary). MR 855573 (87k:17012), https://doi.org/10.1016/0393-0440(86)90005-7
  • [22] G. D. Mostow, Factor spaces of solvable groups, Annals of Math. 60 (1954), (2), 1-27. MR0061611. Errata Ann. of Math. (2) 66 (1957), 590. MR 0090001
  • [23] Joseph Neisendorfer and Timothy Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978), no. 4, 565-580. MR 0500938 (58 #18429)
  • [24] Aleksy Tralle and John Oprea, Symplectic manifolds with no Kähler structure, Lecture Notes in Mathematics, vol. 1661, Springer-Verlag, Berlin, 1997. MR 1465676 (98k:53038)
  • [25] D. Tischler, On fibering certain foliated manifolds over $ S^{1}$, Topology 9 (1970), 153-154. MR 0256413 (41 #1069)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C15, 55S30, 53D35, 55P62, 57R17

Retrieve articles in all journals with MSC (2010): 53C15, 55S30, 53D35, 55P62, 57R17


Additional Information

Giovanni Bazzoni
Affiliation: Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/ Nicolas Cabrera 13-15, 28049 Madrid, Spain
Email: gbazzoni@icmat.es

Marisa Fernández
Affiliation: Facultad de Ciencia y Tecnología, Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
Email: marisa.fernandez@ehu.es

Vicente Muñoz
Affiliation: Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain
Email: vicente.munoz@mat.ucm.es

DOI: https://doi.org/10.1090/S0002-9947-2014-06361-7
Keywords: Co-symplectic manifold, mapping torus, minimal model, formal manifold.
Received by editor(s): January 10, 2013
Received by editor(s) in revised form: December 23, 2013
Published electronically: September 4, 2014
Additional Notes: The first and third authors were partially supported by Project MICINN (Spain) MTM2010-17389. The second author was partially supported through Project MICINN (Spain) MTM2011-28326-C02-02, and Project of UPV/EHU ref. UFI11/52
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society