Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Self-improving properties for abstract Poincaré type inequalities


Authors: Frédéric Bernicot and José María Martell
Journal: Trans. Amer. Math. Soc. 367 (2015), 4793-4835
MSC (2010): Primary 46E35; Secondary 47D06, 46E30, 42B25, 58J35
DOI: https://doi.org/10.1090/S0002-9947-2014-06315-0
Published electronically: November 12, 2014
MathSciNet review: 3335401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated $ BMO$ and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.


References [Enhancements On Off] (What's this?)

  • [Aus] Pascal Auscher, On necessary and sufficient conditions for $ L^p$-estimates of Riesz transforms associated to elliptic operators on $ \mathbb{R}^n$ and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871, xviii+75. MR 2292385 (2007k:42025), https://doi.org/10.1090/memo/0871
  • [AM] Pascal Auscher and José María Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type, J. Evol. Equ. 7 (2007), no. 2, 265-316. MR 2316480 (2008m:47059), https://doi.org/10.1007/s00028-007-0288-9
  • [BJM] Nadine Badr, Ana Jiménez-del-Toro, and José María Martell, $ L^p$ self-improvement of generalized Poincaré inequalities in spaces of homogeneous type, J. Funct. Anal. 260 (2011), no. 11, 3147-3188. MR 2776565 (2012f:35009), https://doi.org/10.1016/j.jfa.2011.01.014
  • [BZ1] Frédéric Bernicot and Jiman Zhao, New abstract Hardy spaces, J. Funct. Anal. 255 (2008), no. 7, 1761-1796. MR 2442082 (2009k:46043), https://doi.org/10.1016/j.jfa.2008.06.018
  • [BZ2] Frédéric Bernicot and Jiman Zhao, On maximal $ L^p$-regularity, J. Funct. Anal. 256 (2009), no. 8, 2561-2586. MR 2502526 (2010a:47080), https://doi.org/10.1016/j.jfa.2009.01.018
  • [BZ3] Frédéric Bernicot and Jiman Zhao, Abstract framework for John-Nirenberg inequalities and applications to Hardy spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 3, 475-501. MR 3059835
  • [BG] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304. MR 0440695 (55 #13567)
  • [DDY] Donggao Deng, Xuan Thinh Duong, and Lixin Yan, A characterization of the Morrey-Campanato spaces, Math. Z. 250 (2005), no. 3, 641-655. MR 2179615 (2006g:42039), https://doi.org/10.1007/s00209-005-0769-x
  • [DY1] Xuan Thinh Duong and Lixin Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), no. 10, 1375-1420. MR 2162784 (2006i:26012), https://doi.org/10.1002/cpa.20080
  • [DY2] Xuan Thinh Duong and Lixin Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), no. 4, 943-973 (electronic). MR 2163867 (2006d:42037), https://doi.org/10.1090/S0894-0347-05-00496-0
  • [FPW] Bruno Franchi, Carlos Pérez, and Richard L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), no. 1, 108-146. MR 1609261 (99d:42042), https://doi.org/10.1006/jfan.1997.3175
  • [GR] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149 (87d:42023)
  • [Gra] Loukas Grafakos, Classical and modern Fourier analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004. MR 2449250
  • [HK1] Juha Heinonen and Pekka Koskela, From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 2, 554-556. MR 1372507 (96m:30034), https://doi.org/10.1073/pnas.93.2.554
  • [HK2] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61. MR 1654771 (99j:30025), https://doi.org/10.1007/BF02392747
  • [HMar] Steve Hofmann and José María Martell, $ L^p$ bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat. 47 (2003), no. 2, 497-515. MR 2006497 (2004i:35067), https://doi.org/10.5565/PUBLMAT_47203_12
  • [HMay] Steve Hofmann and Svitlana Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), no. 1, 37-116. MR 2481054 (2009m:42038), https://doi.org/10.1007/s00208-008-0295-3
  • [HMM] Steve Hofmann, Svitlana Mayboroda, and Alan McIntosh, Second order elliptic operators with complex bounded measurable coefficients in $ L^p$, Sobolev and Hardy spaces, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 5, 723-800 (English, with English and French summaries). MR 2931518
  • [Jim] Ana Jiménez-del-Toro, Exponential self-improvement of generalized Poincaré inequalities associated with approximations of the identity and semigroups, Trans. Amer. Math. Soc. 364 (2012), no. 2, 637-660. MR 2846346 (2012m:46044), https://doi.org/10.1090/S0002-9947-2011-05344-4
  • [JM] Ana Jiménez-del-Toro and José María Martell, Self-improvement of Poincaré type inequalities associated with approximations of the identity and semigroups, Potential Anal. 38 (2013), no. 3, 805-841. MR 3034601, https://doi.org/10.1007/s11118-012-9298-5
  • [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24 #A1348)
  • [MP] Paul MacManus and Carlos Pérez, Trudinger inequalities without derivatives, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1997-2012 (electronic). MR 1881027 (2003e:46051), https://doi.org/10.1090/S0002-9947-02-02918-5
  • [Mar] José María Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math. 161 (2004), no. 2, 113-145. MR 2033231 (2005b:42016), https://doi.org/10.4064/sm161-2-2

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46E35, 47D06, 46E30, 42B25, 58J35

Retrieve articles in all journals with MSC (2010): 46E35, 47D06, 46E30, 42B25, 58J35


Additional Information

Frédéric Bernicot
Affiliation: Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2, Rue de la Houssinière F-44322 Nantes Cedex 03, France
Email: frederic.bernicot@univ-nantes.fr

José María Martell
Affiliation: Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, E-28049 Madrid, Spain
Email: chema.martell@icmat.es

DOI: https://doi.org/10.1090/S0002-9947-2014-06315-0
Keywords: Self-improving properties, BMO and Lipschitz spaces, John-Nirenberg inequalities, generalized Poincar\'e-Sobolev inequalities, pseudo-Poincar\'e inequalities, semigroups, dyadic cubes, weights, good-$\lambda$ inequalities.
Received by editor(s): March 21, 2013
Published electronically: November 12, 2014
Additional Notes: The second author was supported by MINECO Grant MTM2010-16518 and ICMAT Severo Ochoa project SEV-2011-0087
Both authors wish to thank Pascal Auscher, Steve Hofmann and Svitlana Mayboroda for helpful comments concerning some of the applications.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society