Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variations in noncommutative potential theory: Finite-energy states, potentials and multipliers


Authors: Fabio Cipriani and Jean-Luc Sauvageot
Journal: Trans. Amer. Math. Soc. 367 (2015), 4837-4871
MSC (2010): Primary 46L57, 46L87
DOI: https://doi.org/10.1090/S0002-9947-2015-06395-8
Published electronically: February 12, 2015
MathSciNet review: 3335402
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we undertake an extension of various aspects of the potential theory of Dirichlet forms to noncommutative C$ ^*$-algebras with trace. In particular we introduce finite-energy states, potentials and multipliers of Dirichlet spaces. We prove several results among which are the celebrated Deny's embedding theorem, Deny's inequality, the fact that the carré du champ of bounded potentials are finite-energy functionals and the fact that bounded eigenvectors are multipliers. Deny's embedding theorem and Deny's inequality are also crucial to prove that the algebra of finite-energy multipliers is a form core and that it is dense in $ A$ provided the resolvent has the Feller property.

Examples include Dirichlet spaces on group C$ ^*$-algebras associated to negative definite functions, Dirichlet forms arising in free probability, Dirichlet forms on algebras associated to aperiodic tilings, Dirichlet forms of Markovian semigroups on locally compact spaces, in particular on post critically finite self-similar fractals, and Bochner and Hodge-de Rham Laplacians on Riemannian manifolds.


References [Enhancements On Off] (What's this?)

  • [AHK] Sergio Albeverio and Raphael Hoegh-Krohn, Dirichlet forms and Markov semigroups on $ C^*$-algebras, Comm. Math. Phys. 56 (1977), no. 2, 173-187. MR 0461153 (57 #1138)
  • [Ara] Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309-354. MR 0350437 (50 #2929)
  • [B] Jean Bellissard, The noncommutative geometry of aperiodic solids, Geometric and topological methods for quantum field theory (Villa de Leyva, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 86-156. MR 2009996 (2005f:81077), https://doi.org/10.1142/9789812705068_0002
  • [BES] Jean Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35 (1994), no. 10, 5373-5451. Topology and physics. MR 1295473 (95h:81114), https://doi.org/10.1063/1.530758
  • [BeDe1] A. Beurling and J. Deny, Espaces de Dirichlet. I. Le cas élémentaire, Acta Math. 99 (1958), 203-224 (French). MR 0098924 (20 #5373)
  • [BeDe2] A. Beurling and J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 208-215. MR 0106365 (21 #5098)
  • [Bi] Philippe Biane, Logarithmic Sobolev inequalities, matrix models and free entropy: International Workshop on Operator Algebra and Operator Theory (Linfen, 2001), Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 3, 497-506. MR 2014030 (2004k:46113), https://doi.org/10.1007/s10114-003-0271-5
  • [Bo] Florin Boca, On the method of constructing irreducible finite index subfactors of Popa, Pacific J. Math. 161 (1993), no. 2, 201-231. MR 1242197 (94h:46096)
  • [Boz] Marek Bożejko, Positive definite functions on the free group and the noncommutative Riesz product, Boll. Un. Mat. Ital. A (6) 5 (1986), no. 1, 13-21 (English, with Italian summary). MR 833375 (88a:43007)
  • [Bre] M. Brelot, La théorie moderne du potentiel, Ann. Inst. Fourier Grenoble 4 (1952), 113-140 (1954) (French). MR 0059419 (15,527a)
  • [Ca] Henri Cartan, Sur les fondements de la théorie du potentiel, Bull. Soc. Math. France 69 (1941), 71-96 (French). MR 0015623 (7,447i)
  • [CCJJV] Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette, Groups with the Haagerup property: Gromov's a-T-menability, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001. MR 1852148 (2002h:22007)
  • [C1] Fabio Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), no. 2, 259-300. MR 1454483 (98i:46067), https://doi.org/10.1006/jfan.1996.3063
  • [C2] Fabio Cipriani, Dirichlet forms on noncommutative spaces, Quantum potential theory, Lecture Notes in Math., vol. 1954, Springer, Berlin, 2008, pp. 161-276. MR 2463708 (2010f:46112), https://doi.org/10.1007/978-3-540-69365-9_5
  • [C3] Fabio Cipriani, The variational approach to the Dirichlet problem in $ C^*$-algebras, Quantum probability (Gdańsk, 1997) Banach Center Publ., vol. 43, Polish Acad. Sci., Warsaw, 1998, pp. 135-146. MR 1649716 (99i:46050)
  • [CFK] Fabio Cipriani, Uwe Franz, and Anna Kula, Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory, J. Funct. Anal. 266 (2014), no. 5, 2789-2844. MR 3158709, https://doi.org/10.1016/j.jfa.2013.11.026
  • [CS1] Fabio Cipriani and Jean-Luc Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003), no. 1, 78-120. MR 1986156 (2004e:46080), https://doi.org/10.1016/S0022-1236(03)00085-5
  • [CS2] Fabio Cipriani and Jean-Luc Sauvageot, Strong solutions to the Dirichlet problem for differential forms: a quantum dynamical semigroup approach, Advances in quantum dynamics (South Hadley, MA, 2002) Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI, 2003, pp. 109-117. MR 2026013 (2005b:58030), https://doi.org/10.1090/conm/335/06001
  • [CS3] Fabio Cipriani and Jean-Luc Sauvageot, Noncommutative potential theory and the sign of the curvature operator in Riemannian geometry, Geom. Funct. Anal. 13 (2003), no. 3, 521-545. MR 1995798 (2005a:58040), https://doi.org/10.1007/s00039-003-0421-z
  • [CGIS1] Fabio Cipriani, Daniele Guido, Tommaso Isola, and Jean-Luc Sauvageot, Integrals and potentials of differential 1-forms on the Sierpinski gasket, Adv. Math. 239 (2013), 128-163. MR 3045145, https://doi.org/10.1016/j.aim.2013.02.014
  • [CGIS2] Fabio Cipriani, Daniele Guido, Tommaso Isola, and Jean-Luc Sauvageot, Spectral triples for the Sierpinski gasket, J. Funct. Anal. 266 (2014), no. 8, 4809-4869. MR 3177323, https://doi.org/10.1016/j.jfa.2014.02.013
  • [Co] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779 (95j:46063)
  • [CoTr] Alain Connes and Paula Tretkoff, The Gauss-Bonnet theorem for the noncommutative two torus, Noncommutative geometry, arithmetic, and related topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, pp. 141-158. MR 2907006
  • [Da] Yoann Dabrowski, A note about proving non-$ \Gamma $ under a finite non-microstates free Fisher information assumption, J. Funct. Anal. 258 (2010), no. 11, 3662-3674. MR 2606868 (2011d:46135), https://doi.org/10.1016/j.jfa.2010.02.010
  • [Dav] E. Brian Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239 (90e:35123)
  • [DL] E. Brian Davies and J. Martin Lindsay, Noncommutative symmetric Markov semigroups, Math. Z. 210 (1992), no. 3, 379-411. MR 1171180 (93f:46088), https://doi.org/10.1007/BF02571804
  • [DR1] E. Brian Davies and O. S. Rothaus, Markov semigroups on $ C^*$-bundles, J. Funct. Anal. 85 (1989), no. 2, 264-286. MR 1012206 (90i:58217), https://doi.org/10.1016/0022-1236(89)90037-2
  • [DR2] E. Brian Davies and O. S. Rothaus, A BLW inequality for vector bundles and applications to spectral bounds, J. Funct. Anal. 86 (1989), no. 2, 390-410. MR 1021142 (90j:46057), https://doi.org/10.1016/0022-1236(89)90058-X
  • [deH] Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869 (2001i:20081)
  • [Den] J. Deny, Méthodes hilbertiennes en théorie du potentiel, Potential Theory (C.I.M.E., I Ciclo, Stresa, 1969) Edizioni Cremonese, Rome, 1970, pp. 121-201 (French). MR 0284609 (44 #1833)
  • [Dix] Jacques Dixmier, Les $ C^{\ast } $-algèbres et leurs représentations, Deuxième édition. Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). MR 0246136 (39 #7442)
  • [Do] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258 (85k:31001)
  • [F1] Masatoshi Fukushima, Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc. 155 (1971), 455-473. MR 0281256 (43 #6975)
  • [F2] Masatoshi Fukushima, Dirichlet spaces and strong Markov processes, Trans. Amer. Math. Soc. 162 (1971), 185-224. MR 0295435 (45 #4501)
  • [FOT] Masatoshi Fukushima, Yōichi Ōshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1994. MR 1303354 (96f:60126)
  • [G1] Leonard Gross, Existence and uniqueness of physical ground states, J. Functional Analysis 10 (1972), 52-109. MR 0339722 (49 #4479)
  • [G2] Leonard Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form, Duke Math. J. 42 (1975), no. 3, 383-396. MR 0372613 (51 #8820)
  • [G3] Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061-1083. MR 0420249 (54 #8263)
  • [Haa1] Uffe Haagerup, An example of a nonnuclear $ C^{\ast } $-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279-293. MR 520930 (80j:46094), https://doi.org/10.1007/BF01410082
  • [Haa2] Uffe Haagerup, Operator-valued weights in von Neumann algebras. I, J. Funct. Anal. 32 (1979), no. 2, 175-206. MR 534673 (81e:46049a), https://doi.org/10.1016/0022-1236(79)90053-3
  • [Ki] Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042 (2002c:28015)
  • [LM] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
  • [LJ] Yves Le Jan, Mesures associées à une forme de Dirichlet. Applications, Bull. Soc. Math. France 106 (1978), no. 1, 61-112 (French). MR 508949 (81c:31014)
  • [MS] Vladimir G. Maz'ya and Tatyana O. Shaposhnikova, Theory of Sobolev multipliers, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 337, Springer-Verlag, Berlin, 2009. With applications to differential and integral operators. MR 2457601 (2010d:46039)
  • [Moko] Gabriel Mokobodzki, Fermabilité des formes de Dirichlet et inégalité de type Poincaré, Potential Anal. 4 (1995), no. 4, 409-413 (French). Potential theory and degenerate partial differential operators (Parma). MR 1354892 (96k:31018), https://doi.org/10.1007/BF01053455
  • [Pe1] Jesse Peterson, $ L^2$-rigidity in von Neumann algebras, Invent. Math. 175 (2009), no. 2, 417-433. MR 2470111 (2010b:46128), https://doi.org/10.1007/s00222-008-0154-6
  • [Pe2] Jesse Peterson, A 1-cohomology characterization of property (T) in von Neumann algebras, Pacific J. Math. 243 (2009), no. 1, 181-199. MR 2550142 (2010f:22009), https://doi.org/10.2140/pjm.2009.243.181
  • [R] Bruna Rizzi, Moltiplicatori di $ H^{1,2}(\Omega )$, Ann. Univ. Ferrara Sez. VII (N.S.) 17 (1972), 47-59 (Italian, with English summary). MR 0313794 (47 #2348)
  • [S1] Jean-Luc Sauvageot, Tangent bimodule and locality for dissipative operators on $ C^*$-algebras, Quantum probability and applications, IV (Rome, 1987) Lecture Notes in Math., vol. 1396, Springer, Berlin, 1989, pp. 322-338. MR 1019584 (90k:46145), https://doi.org/10.1007/BFb0083561
  • [S2] Jean-Luc Sauvageot, Quantum Dirichlet forms, differential calculus and semigroups, Quantum probability and applications, V (Heidelberg, 1988) Lecture Notes in Math., vol. 1442, Springer, Berlin, 1990, pp. 334-346. MR 1091319 (92h:46083), https://doi.org/10.1007/BFb0085527
  • [S3] Jean-Luc Sauvageot, Semi-groupe de la chaleur transverse sur la $ C^*$-algèbre d'un feuilletage riemannien, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 7, 531-536 (French, with English summary). MR 1050125 (91g:58279)
  • [S4] Jean-Luc Sauvageot, Semi-groupe de la chaleur transverse sur la $ C^*$-algèbre d'un feuilletage riemannien, J. Funct. Anal. 142 (1996), no. 2, 511-538 (French, with English and French summaries). MR 1423043 (97j:58151), https://doi.org/10.1006/jfan.1996.0158
  • [Ste] David A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113-139. MR 550655 (81a:30027)
  • [Str] Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. MR 0215084 (35 #5927)
  • [V1] Dan Voiculescu, Lectures on free probability theory, Lectures on probability theory and statistics (Saint-Flour, 1998) Lecture Notes in Math., vol. 1738, Springer, Berlin, 2000, pp. 279-349. MR 1775641 (2001g:46121), https://doi.org/10.1007/BFb0106703
  • [V2] Dan Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), no. 1, 189-227. MR 1618636 (99d:46087), https://doi.org/10.1007/s002220050222
  • [V3] Dan Voiculescu, Almost normal operators mod Hilbert-Schmidt and the K-theory of the algebras $ E\Lambda (\Omega )$, arXiv:1112.4930.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L57, 46L87

Retrieve articles in all journals with MSC (2010): 46L57, 46L87


Additional Information

Fabio Cipriani
Affiliation: Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: fabio.cipriani@polimi.it

Jean-Luc Sauvageot
Affiliation: Institut de Mathématiques, CNRS-Université Pierre et Marie Curie, Université Paris VII, boite 191, 4 place Jussieu, F-75252 Paris Cedex 05
Address at time of publication: Institut de Mathématiques, CNRS-Université Denis Diderot, F-75205 Paris Cedex 13, France
Email: jlsauva@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-2015-06395-8
Keywords: C$^*$ and von Neumann algebras, Dirichlet space multiplier, finite-energy functional, potential, carr\'e du champ.
Received by editor(s): March 22, 2013
Published electronically: February 12, 2015
Additional Notes: This work was supported by Italy I.N.D.A.M. – France C.N.R.S. G.D.R.E.-G.R.E.F.I. Geometrie Noncommutative and by Italy M.I.U.R.-P.R.I.N. project N. 2012TC7588-003
Dedicated: Dedicated to Gabriel Mokobodzki
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society