Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Operations on arc diagrams and degenerations for invariant subspaces of linear operators


Authors: Justyna Kosakowska and Markus Schmidmeier
Journal: Trans. Amer. Math. Soc. 367 (2015), 5475-5505
MSC (2010): Primary 14L30, 16G20; Secondary 16G70, 05C85, 47A15
DOI: https://doi.org/10.1090/S0002-9947-2014-06206-5
Published electronically: December 24, 2014
MathSciNet review: 3347180
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study geometric properties of varieties associated with invariant subspaces of nilpotent operators. There are algebraic groups acting on these varieties, and we give dimensions of orbits of these actions. Moreover, a combinatorial characterization of the partial order given by degenerations is described.


References [Enhancements On Off] (What's this?)

  • [1] Garrett Birkhoff, Subgroups of Abelian Groups, Proc. London Math. Soc. S2-38, no. 1, 385. MR 1576323, https://doi.org/10.1112/plms/s2-38.1.385
  • [2] Klaus Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245-287. MR 1402728 (98e:16012), https://doi.org/10.1006/aima.1996.0053
  • [3] Klaus Bongartz, Degenerations for representations of tame quivers, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 5, 647-668. MR 1341664 (96i:16020)
  • [4] Christian U. Jensen and Helmut Lenzing, Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1989. MR 1057608 (91m:03038)
  • [5] Stanisław Kasjan, Representation-directed algebras form an open scheme, Colloq. Math. 93 (2002), no. 2, 237-250. MR 1930801 (2003h:16022), https://doi.org/10.4064/cm93-2-3
  • [6] Stanisław Kasjan and Justyna Kosakowska, On Lie algebras associated with representation-directed algebras, J. Pure Appl. Algebra 214 (2010), no. 5, 678-688. MR 2577675 (2011d:17037), https://doi.org/10.1016/j.jpaa.2009.07.012
  • [7] T. Klein, The multiplication of Schur-functions and extensions of $ p$-modules, J. London Math. Soc. 43 (1968), 280-284. MR 0228481 (37 #4061)
  • [8] T. Klein, The Hall polynomial, J. Algebra 12 (1969), 61-78. MR 0236260 (38 #4557)
  • [9] Justyna Kosakowska, Degenerations in a class of matrix varieties and prinjective modules, J. Algebra 263 (2003), no. 2, 262-277. MR 1978651 (2004d:16027), https://doi.org/10.1016/S0021-8693(03)00173-X
  • [10] H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 116, Cambridge Univ. Press, Cambridge, 1986, pp. 109-145. MR 897322 (88k:16028)
  • [11] Serge Lang and André Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827. MR 0065218 (16,398d)
  • [12] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144 (96h:05207)
  • [13] Christine Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 275-301. MR 868301 (88b:16051)
  • [14] Claus Michael Ringel, Hall algebras, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 433-447. MR 1171248 (93f:16027)
  • [15] Claus Michael Ringel and Markus Schmidmeier, Invariant subspaces of nilpotent linear operators. I, J. Reine Angew. Math. 614 (2008), 1-52. MR 2376281 (2009d:16016), https://doi.org/10.1515/CRELLE.2008.001
  • [16] Markus Schmidmeier, Bounded submodules of modules, J. Pure Appl. Algebra 203 (2005), no. 1-3, 45-82. MR 2176651 (2006j:16022), https://doi.org/10.1016/j.jpaa.2005.02.003
  • [17] Markus Schmidmeier, Hall polynomials via automorphisms of short exact sequences, Algebr. Represent. Theory 15 (2012), no. 3, 449-481. MR 2912467, https://doi.org/10.1007/s10468-010-9250-6
  • [18] Daniel Simson, Representation types of the category of subprojective representations of a finite poset over $ K[t]/(t^m)$ and a solution of a Birkhoff type problem, J. Algebra 311 (2007), no. 1, 1-30. MR 2309875 (2009b:16040), https://doi.org/10.1016/j.jalgebra.2007.01.029
  • [19] Grzegorz Zwara, Degenerations for representations of extended Dynkin quivers, Comment. Math. Helv. 73 (1998), no. 1, 71-88. MR 1610587 (99b:16021), https://doi.org/10.1007/s000140050046

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14L30, 16G20, 16G70, 05C85, 47A15

Retrieve articles in all journals with MSC (2010): 14L30, 16G20, 16G70, 05C85, 47A15


Additional Information

Justyna Kosakowska
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Email: justus@mat.umk.pl

Markus Schmidmeier
Affiliation: Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431
Email: markus@math.fau.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06206-5
Keywords: Degenerations, partial orders, Hall polynomials, nilpotent operators, invariant subspaces, Littlewood-Richardson tableaux
Received by editor(s): February 13, 2012
Received by editor(s) in revised form: August 16, 2012, and June 4, 2013
Published electronically: December 24, 2014
Additional Notes: The first named author was partially supported by Research Grant No. DEC-2011/02/A/ST1/00216 of the Polish National Science Center
Dedicated: Dedicated to Professor Daniel Simson on the occasion of his 70th birthday
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society