Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On a notion of speciality of linear systems in $ \mathbb{P}^n$


Authors: M. C. Brambilla, O. Dumitrescu and E. Postinghel
Journal: Trans. Amer. Math. Soc. 367 (2015), 5447-5473
MSC (2010): Primary 14C20; Secondary 14J70, 14C17
DOI: https://doi.org/10.1090/S0002-9947-2014-06212-0
Published electronically: November 6, 2014
MathSciNet review: 3347179
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a linear system in $ \mathbb{P}^n$ with assigned multiple general points, we compute the cohomology groups of its strict transforms via the blow-up of its linear base locus. This leads us to give a new definition of expected dimension of a linear system, which takes into account the contribution of the linear base locus, and thus to introduce the notion of linear speciality. We investigate such a notion, giving sufficient conditions for a linear system to be linearly non-special for an arbitrary number of points and necessary conditions for a small number of points.


References [Enhancements On Off] (What's this?)

  • [1] David J. Anick, Thin algebras of embedding dimension three, J. Algebra 100 (1986), no. 1, 235-259. MR 839581 (88d:13016a), https://doi.org/10.1016/0021-8693(86)90076-1
  • [2] Edoardo Ballico and Maria Chiara Brambilla, Postulation of general quartuple fat point schemes in $ {\bf P}^3$, J. Pure Appl. Algebra 213 (2009), no. 6, 1002-1012. MR 2498792 (2010b:14106), https://doi.org/10.1016/j.jpaa.2008.11.001
  • [3] E. Ballico, M. C. Brambilla, F. Caruso, and M. Sala, Postulation of general quintuple fat point schemes in $ \mathbb{P}^3$, J. Algebra 363 (2012), 113-139. MR 2925849, https://doi.org/10.1016/j.jalgebra.2012.03.022
  • [4] Maria Chiara Brambilla and Giorgio Ottaviani, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra 212 (2008), no. 5, 1229-1251. MR 2387598 (2008m:14104), https://doi.org/10.1016/j.jpaa.2007.09.014
  • [5] S. Cacciola, M. Donten-Bury, O. Dumitrescu, A. Lo Giudice, and J. Park, Cones of divisors of blow-ups of projective spaces, Matematiche (Catania) 66 (2011), no. 2, 153-187. MR 2862173 (2012m:14013)
  • [6] Ana-Maria Castravet, The Cox ring of $ \overline M_{0,6}$, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3851-3878. MR 2491903 (2009m:14037), https://doi.org/10.1090/S0002-9947-09-04641-8
  • [7] Ana-Maria Castravet and Jenia Tevelev, Hilbert's 14th problem and Cox rings, Compos. Math. 142 (2006), no. 6, 1479-1498. MR 2278756 (2007i:14044), https://doi.org/10.1112/S0010437X06002284
  • [8] A. M. Castravet and J. Tevelev, Exceptional loci on $ \overline {M_{0,n}}$ and hypergraph curves, arXiv:0809.1699 (2008)
  • [9] Karen A. Chandler, The geometric interpretation of Fröberg-Iarrobino conjectures on infinitesimal neighbourhoods of points in projective space, J. Algebra 286 (2005), no. 2, 421-455. MR 2128025 (2005k:14008), https://doi.org/10.1016/j.jalgebra.2005.01.010
  • [10] Ciro Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring's problem, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 289-316. MR 1905326 (2003i:14058)
  • [11] Ciro Ciliberto, Brian Harbourne, Rick Miranda, and Joaquim Roé, Variations of Nagata's conjecture, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 185-203. MR 3114941
  • [12] Cindy De Volder and Antonio Laface, On linear systems of $ \mathbb{P}^3$ through multiple points, J. Algebra 310 (2007), no. 1, 207-217. MR 2307790 (2008b:14009), https://doi.org/10.1016/j.jalgebra.2006.12.003
  • [13] Igor V. Dolgachev, Weyl groups and Cremona transformations, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 283-294. MR 713067 (85e:14018)
  • [14] Marcin Dumnicki, An algorithm to bound the regularity and nonemptiness of linear systems in $ \Bbb P^n$, J. Symbolic Comput. 44 (2009), no. 10, 1448-1462. MR 2543429 (2010i:14108), https://doi.org/10.1016/j.jsc.2009.04.005
  • [15] Marcin Dumnicki, On hypersurfaces in $ \mathbb{P}^3$ with fat points in general position, Univ. Iagel. Acta Math. 46 (2008), 15-19. MR 2553357 (2011b:14017)
  • [16] Ralf Fröberg, An inequality for Hilbert series of graded algebras, Math. Scand. 56 (1985), no. 2, 117-144. MR 813632 (87f:13022)
  • [17] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • [18] D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
  • [19] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977. MR 0463157 (57 #3116)
  • [20] Brendan Hassett and Yuri Tschinkel, On the effective cone of the moduli space of pointed rational curves, Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 83-96. MR 1941624 (2004d:14028), https://doi.org/10.1090/conm/314/05424
  • [21] A. Iarrobino, Inverse system of a symbolic power. III. Thin algebras and fat points, Compositio Math. 108 (1997), no. 3, 319-356. MR 1473851 (98k:13017), https://doi.org/10.1023/A:1000155612073
  • [22] Seán Keel and James McKernan, Contractible extremal rays on $ \overline M_{0,n}$, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 115-130. MR 3184175
  • [23] Antonio Laface and Luca Ugaglia, On a class of special linear systems of $ \mathbb{P}^3$, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5485-5500 (electronic). MR 2238923 (2007e:14009), https://doi.org/10.1090/S0002-9947-06-03891-8
  • [24] Antonio Laface and Luca Ugaglia, On multiples of divisors associated to Veronese embeddings with defective secant variety, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 5, Linear systems and subschemes, 933-942. MR 2574370 (2011b:14020)
  • [25] Antonio Laface and Luca Ugaglia, Standard classes on the blow-up of $ \Bbb P^n$ at points in very general position, Comm. Algebra 40 (2012), no. 6, 2115-2129. MR 2945702, https://doi.org/10.1080/00927872.2011.573517
  • [26] Elisa Postinghel, A new proof of the Alexander-Hirschowitz interpolation theorem, Ann. Mat. Pura Appl. (4) 191 (2012), no. 1, 77-94. MR 2886162, https://doi.org/10.1007/s10231-010-0175-9
  • [27] I. R. Shafarevich, Algebraic geometry. II. Cohomology of algebraic varieties. Algebraic surfaces. A translation of Current problems in mathematics. Fundamental directions. Vol. 35 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst.Nauchn. i Tekhn. Inform., Moscow, 1989 [MR 1060323 (91a:14001)]; translation by R. Treger; translation edited by I. R. Shafarevich, Encyclopaedia of Mathematical Sciences, vol. 35, Springer-Verlag, 1996. MR 1392957 (97a:14001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14C20, 14J70, 14C17

Retrieve articles in all journals with MSC (2010): 14C20, 14J70, 14C17


Additional Information

M. C. Brambilla
Affiliation: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona, Italy
Email: brambilla@dipmat.univpm.it

O. Dumitrescu
Affiliation: Department of Mathematics, MSB 2107, University of California, Davis, California 95616
Email: dolivia@math.ucdavis.edu, dumitrescu@math.uni-hannover.de

E. Postinghel
Affiliation: Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland
Email: epostinghel@impan.pl, elisa.postinghel@wis.kuleuven.be

DOI: https://doi.org/10.1090/S0002-9947-2014-06212-0
Keywords: Linear systems, fat points, base locus, linear speciality, effective cone
Received by editor(s): October 24, 2012
Received by editor(s) in revised form: June 1, 2013
Published electronically: November 6, 2014
Additional Notes: The first author was partially supported by Italian MIUR funds
The second author is a member of “Simion Stoilow” Institute of Mathematics of the Romanian Academy (http://www.imar.ro/)
The third author was partially supported by Marie-Curie IT Network SAGA, [FP7/2007-2013] grant agreement PITN-GA-2008-214584
All authors were partially supported by Institut Mittag-Leffler.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society