Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


On the range of the attenuated Radon transform in strictly convex sets

Authors: Kamran Sadiq and Alexandru Tamasan
Journal: Trans. Amer. Math. Soc. 367 (2015), 5375-5398
MSC (2010): Primary 30E20; Secondary 35J56
Published electronically: November 4, 2014
MathSciNet review: 3347176
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present new necessary and sufficient conditions for a function on $ \partial \Omega \times S^1$ to be in the range of the attenuated Radon transform of a sufficiently smooth function support in the convex set $ \overline \Omega \subset \mathbb{R}^2$. The approach is based on an explicit Hilbert transform associated with traces on the boundary of A-analytic functions in the sense of Bukhgeim.

References [Enhancements On Off] (What's this?)

  • [1] È. V. Arbuzov, A. L. Bukhgeĭm, and S. G. Kazantsev, Two-dimensional tomography problems and the theory of $ A$-analytic functions [translation of Algebra, geometry, analysis and mathematical physics (Russian) (Novosibirsk, 1996), 6-20, 189, Izdat.Ross. Akad. Nauk Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1997; MR1624170 (99m:44003)], Siberian Adv. Math. 8 (1998), no. 4, 1-20. MR 1666500 (2000a:44002)
  • [2] Guillaume Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems 20 (2004), no. 2, 399-418. MR 2065430 (2005j:44002),
  • [3] Jan Boman and Jan-Olov Strömberg, Novikov's inversion formula for the attenuated Radon transform--a new approach, J. Geom. Anal. 14 (2004), no. 2, 185-198. MR 2051682 (2005d:44002),
  • [4] A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems by M. M. Lavrentev and L. Ya. Savalev, Plenum, New York, 1995.
  • [5] David V. Finch, The attenuated x-ray transform: recent developments, Inside out: inverse problems and applications, Math. Sci. Res. Inst. Publ., vol. 47, Cambridge Univ. Press, Cambridge, 2003, pp. 47-66. MR 2029677 (2005a:44002)
  • [6] I. M. Gelfand and M. I. Graev, Integrals over hyperplanes of basic and generalized functions, Soviet Math. Dokl. 1 (1960), 1369-1372. MR 0126135 (23 #A3431)
  • [7] Sigurur Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308. MR 0223497 (36 #6545)
  • [8] Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston Inc., Boston, MA, 1999. MR 1723736 (2000m:44003)
  • [9] Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503 (2005d:43001)
  • [10] Donald Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49-81. MR 0190652 (32 #8064)
  • [11] N. I. Muskhelishvili, Singular integral equations, Dover Publications Inc., New York, 1992. Boundary problems of function theory and their application to mathematical physics; Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok; Corrected reprint of the 1953 English translation. MR 1215485 (94a:45001)
  • [12] F. Natterer, The mathematics of computerized tomography, B. G. Teubner, Stuttgart, 1986. MR 856916 (88m:44008)
  • [13] F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems 17 (2001), no. 1, 113-119. MR 1818495,
  • [14] Roman G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 12, 1059-1063 (French, with English and French summaries). MR 1847480 (2002e:44003),
  • [15] R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems 18 (2002), no. 3, 677-700. MR 1910195 (2003f:35289),
  • [16] G. P. Paternain, M. Salo, and G. Uhlmann, On the attenuated Ray transform for unitary connections, arXiv:1302.4880v1, 2013.
  • [17] Leonid Pestov and Gunther Uhlmann, On characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not. 80 (2004), 4331-4347. MR 2126628 (2006j:53108),
  • [18] V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994. MR 1374572 (97h:53077)
  • [19] Mikko Salo and Gunther Uhlmann, The attenuated ray transform on simple surfaces, J. Differential Geom. 88 (2011), no. 1, 161-187. MR 2819758
  • [20] Alexandru Tamasan, An inverse boundary value problem in two-dimensional transport, Inverse Problems 18 (2002), no. 1, 209-219. MR 1893591 (2003h:35283),
  • [21] Alexandru Tamasan, Optical tomography in weakly anisotropic scattering media, Inverse problems: theory and applications (Cortona/Pisa, 2002) Contemp. Math., vol. 333, Amer. Math. Soc., Providence, RI, 2003, pp. 199-207. MR 2032017 (2005a:35284),
  • [22] Alexandru Tamasan, Tomographic reconstruction of vector fields in variable background media, Inverse Problems 23 (2007), no. 5, 2197-2205. MR 2353335 (2008k:35506),

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30E20, 35J56

Retrieve articles in all journals with MSC (2010): 30E20, 35J56

Additional Information

Kamran Sadiq
Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816
Address at time of publication: Johann Radon Institute for Computational and Applied Mathematics (RICAM), Altenbergerstrasse 69, A-4040 Linz, Austria

Alexandru Tamasan
Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Keywords: Attenuated Radon transform, A-analytic maps, Hilbert transform
Received by editor(s): May 24, 2013
Published electronically: November 4, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society