Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cofibrant models of diagrams: Mixed Hodge structures in rational homotopy


Author: Joana Cirici
Journal: Trans. Amer. Math. Soc. 367 (2015), 5935-5970
MSC (2010): Primary 18G55, 32S35
DOI: https://doi.org/10.1090/S0002-9947-2014-06405-2
Published electronically: October 3, 2014
MathSciNet review: 3347193
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the homotopy theory of a certain type of diagram category whose vertices are in variable categories with a functorial path, leading to a good calculation of the homotopy category in terms of cofibrant objects. The theory is applied to the category of mixed Hodge diagrams of differential graded algebras. Using Sullivan's minimal models, we prove a multiplicative version of Beilinson's Theorem on mixed Hodge complexes. As a consequence, we obtain functoriality for the mixed Hodge structures on the rational homotopy type of complex algebraic varieties. In this context, the mixed Hodge structures on homotopy groups obtained by Morgan's theory follow from the derived functor of the indecomposables of mixed Hodge diagrams.


References [Enhancements On Off] (What's this?)

  • [1] Hans J. Baues, Obstruction theory on homotopy classification of maps, Lecture Notes in Mathematics, Vol. 628, Springer-Verlag, Berlin-New York, 1977. MR 0467748 (57 #7600)
  • [2] Hans Joachim Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989. MR 985099 (90i:55016)
  • [3] A. A. Beĭlinson, Notes on absolute Hodge cohomology, Applications of algebraic $ K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35-68. MR 862628 (87m:14019), https://doi.org/10.1090/conm/055.1/862628
  • [4] A. K. Bousfield and V. K. A. M. Gugenheim, On $ {\rm PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 0425956 (54 #13906)
  • [5] Kenneth S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973), 419-458. MR 0341469 (49 #6220)
  • [6] J. Cirici and F. Guillén, $ {E}_1$-formality of complex algebraic varieties, Algebr. Geom. Topol., to appear.
  • [7] -, Homotopy theory of mixed Hodge complexes, Preprint, arXiv:math/1304.6236 [math.AG] (2013).
  • [8] Denis-Charles Cisinski, Catégories dérivables, Bull. Soc. Math. France 138 (2010), no. 3, 317-393 (French, with English and French summaries). MR 2729017 (2012b:18019)
  • [9] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57 (French). MR 0498551 (58 #16653a)
  • [10] Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44, 5-77.MR 0498552
  • [11] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245-274. MR 0382702 (52 #3584)
  • [12] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126. MR 1361887 (96h:55014), https://doi.org/10.1016/B978-044481779-2/50003-1
  • [13] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847 (2002d:55014)
  • [14] Phillip Griffiths and John Morgan, Rational homotopy theory and differential forms, 2nd ed., Progress in Mathematics, vol. 16, Springer, New York, 2013. MR 3136262
  • [15] Francisco Guillén and Vicente Navarro Aznar, Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1-91 (French). MR 1953190 (2004i:14020), https://doi.org/10.1007/s102400200003
  • [16] F. Guillén, V. Navarro, P. Pascual, and Agustí Roig, A Cartan-Eilenberg approach to homotopical algebra, J. Pure Appl. Algebra 214 (2010), no. 2, 140-164. MR 2559687 (2010k:18021), https://doi.org/10.1016/j.jpaa.2009.04.009
  • [17] Richard M. Hain, The de Rham homotopy theory of complex algebraic varieties. II, $ K$-Theory 1 (1987), no. 5, 481-497. MR 934453 (89d:14028), https://doi.org/10.1007/BF00536980
  • [18] Stephen Halperin and Daniel Tanré, Homotopie filtré e et fibrés $ C^\infty $, Illinois J. Math. 34 (1990), no. 2, 284-324 (French). MR 1046566 (91g:55018)
  • [19] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134 (99h:55031)
  • [20] K. H. Kamps and T. Porter, Abstract homotopy and simple homotopy theory, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. MR 1464944 (98k:55021)
  • [21] John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137-204. MR 516917 (80e:55020)
  • [22] V. Navarro Aznar, Sur la théorie de Hodge-Deligne, Invent. Math. 90 (1987), no. 1, 11-76 (French). MR 906579 (88j:32037), https://doi.org/10.1007/BF01389031
  • [23] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432 (36 #6480)
  • [24] A. Radulescu-Banu, Cofibrations in homotopy theory, Preprint, arXiv:math/0610009v4 [math.AT] (2009).
  • [25] Beatriz Rodríguez González, Simplicial descent categories, J. Pure Appl. Algebra 216 (2012), no. 4, 775-788. MR 2864852, https://doi.org/10.1016/j.jpaa.2011.10.003
  • [26] Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331 (1978). MR 0646078 (58 #31119)
  • [27] R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91-109. MR 510404 (80b:18015), https://doi.org/10.1017/S0305004100055535
  • [28] B. Totaro, Topology of singular algebraic varieties, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 533-541. MR 1957063 (2004k:14030)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18G55, 32S35

Retrieve articles in all journals with MSC (2010): 18G55, 32S35


Additional Information

Joana Cirici
Affiliation: Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: jcirici@math.fu-berlin.de

DOI: https://doi.org/10.1090/S0002-9947-2014-06405-2
Received by editor(s): August 21, 2013
Received by editor(s) in revised form: January 20, 2014
Published electronically: October 3, 2014
Additional Notes: This research was financially supported by the Marie Curie Action through PCOFUND-GA-2010-267228, and partially supported by the Spanish Ministry of Economy and Competitiveness MTM 2009-09557 and the DFG under project SFB 647.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society