Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


The ADM mass of asymptotically flat hypersurfaces

Authors: Levi Lopes de Lima and Frederico Girão
Journal: Trans. Amer. Math. Soc. 367 (2015), 6247-6266
MSC (2010): Primary 53C21; Secondary 53C80
Published electronically: October 3, 2014
MathSciNet review: 3356936
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide integral formulae for the ADM mass of asymptotically flat hypersurfaces in Riemannian manifolds with a certain warped product structure in a neighborhood of `spatial' infinity, thus extending Lam's recent results on Euclidean graphs to this broader context. As applications we exhibit, in any dimension, new examples of manifolds for which versions of the Positive Mass and Riemannian Penrose inequalities hold and discuss a notion of quasi-local mass in this setting. The proof explores a novel connection between the co-vector defining the ADM mass of a hypersurface as above and the Newton tensor associated to its shape operator, which takes place in the presence of an ambient Killing field.

References [Enhancements On Off] (What's this?)

  • [1] Luis J. Alías, Aldir Brasil Jr., and A. Gervasio Colares, Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 2, 465-488. MR 1998575 (2004h:53093),
  • [2] Luis J. Alías, Jorge H. S. de Lira, and J. Miguel Malacarne, Constant higher-order mean curvature hypersurfaces in Riemannian spaces, J. Inst. Math. Jussieu 5 (2006), no. 4, 527-562. MR 2261223 (2007i:53062),
  • [3] R. Arnowitt, S. Deser, and C. W. Misner, Energy and the criteria for radiation in general relativity, Phys. Rev. (2) 118 (1960), 1100-1104. MR 0127945 (23 #B990)
  • [4] Luis J. Alías and J. Miguel Malacarne, Spacelike hypersurfaces with constant higher order mean curvature in Minkowski space-time, J. Geom. Phys. 41 (2002), no. 4, 359-375. MR 1888471 (2003a:53084),
  • [5] Luis J. Alías, Alfonso Romero, and Miguel Sánchez, Spacelike hypersurfaces of constant mean curvature in certain spacetimes, Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996), 1997, pp. 655-661. MR 1489832 (99c:53058),
  • [6] Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), no. 5, 661-693. MR 849427 (88b:58144),
  • [7] Robert Bartnik, Quasi-spherical metrics and prescribed scalar curvature, J. Differential Geom. 37 (1993), no. 1, 31-71. MR 1198599 (93i:53041)
  • [8] Robert Bartnik, Mass and 3-metrics of non-negative scalar curvature, (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 231-240. MR 1957036 (2003k:53034)
  • [9] Hubert L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom. 59 (2001), no. 2, 177-267. MR 1908823 (2004j:53046)
  • [10] Hubert L. Bray and Kevin Iga, Superharmonic functions in $ \mathbf {R}^n$ and the Penrose inequality in general relativity, Comm. Anal. Geom. 10 (2002), no. 5, 999-1016. MR 1957660 (2003k:83066)
  • [11] Hubert L. Bray and Marcus A. Khuri, P.D.E.'s which imply the Penrose conjecture, Asian J. Math. 15 (2011), no. 4, 557-610. MR 2853650
  • [12] Hubert L. Bray and Dan A. Lee, On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. J. 148 (2009), no. 1, 81-106. MR 2515101 (2010f:53051),
  • [13] Simon Brendle, Rigidity phenomena involving scalar curvature, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 179-202. MR 3076061,
  • [14] Simon Brendle and Fernando C. Marques, Recent progress on the Yamabe problem, Surveys in geometric analysis and relativity, Adv. Lect. Math. (ALM), vol. 20, Int. Press, Somerville, MA, 2011, pp. 29-47. MR 2906920
  • [15] Simon Brendle, Fernando C. Marques, and Andre Neves, Deformations of the hemisphere that increase scalar curvature, Invent. Math. 185 (2011), no. 1, 175-197. MR 2810799 (2012h:53094),
  • [16] Piotr Chruściel, Boundary conditions at spatial infinity from a Hamiltonian point of view, Topological properties and global structure of space-time (Erice, 1985), NATO Adv. Sci. Inst. Ser. B Phys., vol. 138, Plenum, New York, 1986, pp. 49-59. MR 1102938 (92h:83003)
  • [17] Piotr T. Chruściel and Marc Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math. 212 (2003), no. 2, 231-264. MR 2038048 (2005d:53052),
  • [18] Piotr T. Chruściel and Gabriel Nagy, The mass of spacelike hypersurfaces in asymptotically anti-de Sitter space-times, Adv. Theor. Math. Phys. 5 (2001), no. 4, 697-754. MR 1926293 (2004b:53121)
  • [19] Justin Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. MR 1794269 (2002b:53050),
  • [20] Henrique Fernandes de Lima, Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space, J. Geom. Phys. 57 (2007), no. 3, 967-975. MR 2275203 (2007i:53065),
  • [21] L. L. de Lima, and F. Girão, Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces, arXiv:1201.4991.
  • [22] Alexandre Freire and Fernando Schwartz, Mass-capacity inequalities for conformally flat manifolds with boundary, Comm. Partial Differential Equations 39 (2014), no. 1, 98-119. MR 3169780,
  • [23] Marc Herzlich, Minimal surfaces, the Dirac operator and the Penrose inequality, Séminaire de Théorie Spectrale et Géométrie, Vol. 20, Année 2001-2002, Sémin. Théor. Spectr. Géom., vol. 20, Univ. Grenoble I, Saint, 2002, pp. 9-16. MR 1987634 (2004m:53062)
  • [24] Marc Herzlich, Mass formulae for asymptotically hyperbolic manifolds, AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, 2005, pp. 103-121. MR 2160869 (2006k:53052),
  • [25] Lan-Hsuan Huang and Damin Wu, Hypersurfaces with nonnegative scalar curvature, J. Differential Geom. 95 (2013), no. 2, 249-278. MR 3128984
  • [26] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. MR 1916951 (2003h:53091)
  • [27] J. L. Jauregui, Penrose-type inequalities with a Euclidean background, arXiv:1108.4042.
  • [28] M. A. Khuri, F. C. Marques, and R. M. Schoen, A compactness theorem for the Yamabe problem, J. Differential Geom. 81 (2009), no. 1, 143-196. MR 2477893 (2010e:53065)
  • [29] M.-K. G. Lam, The Graphs Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions, arXiv:1010.4256.
  • [30] Mau-Kwong George Lam, The Graph Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-Duke University. MR 2873434
  • [31] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91. MR 888880 (88f:53001),
  • [32] Yan Yan Li and Lei Zhang, Compactness of solutions to the Yamabe problem. II, Calc. Var. Partial Differential Equations 24 (2005), no. 2, 185-237. MR 2164927 (2006f:53049),
  • [33] B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011), no. 5, 052504, 14. MR 2839077 (2012f:83024),
  • [34] Harold Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), no. 2, 211-239. MR 1216008 (94b:53097)
  • [35] Robert C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J. 20 (1973), 373-383. MR 0334045 (48 #12364)
  • [36] Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479-495. MR 788292 (86i:58137)
  • [37] Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45-76. MR 526976 (80j:83024)
  • [38] Fernando Schwartz, A volumetric Penrose inequality for conformally flat manifolds, Ann. Henri Poincaré 12 (2011), no. 1, 67-76. MR 2770090 (2012e:53059),
  • [39] L. Szabados, Quasi-local energy-momentum and angular momentum in General Relativity, Living Rev. 4 (2004), available at
  • [40] Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), no. 3, 381-402. MR 626707 (83e:83035)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C21, 53C80

Retrieve articles in all journals with MSC (2010): 53C21, 53C80

Additional Information

Levi Lopes de Lima
Affiliation: Department of Mathematics, Federal University of Ceará, Campus do Pici, Av. Humberto Monte, s/n, 60455-760, Fortaleza/CE, Brazil

Frederico Girão
Affiliation: Department of Mathematics, Federal University of Ceará, Campus do Pici, Av. Humberto Monte, s/n, 60455-760, Fortaleza/CE, Brazil

Received by editor(s): March 10, 2012
Received by editor(s) in revised form: June 8, 2013
Published electronically: October 3, 2014
Additional Notes: This work was partially supported by CNPq/BR and FUNCAP/CE
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society