Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients

Author: Hoai-Minh Nguyen
Journal: Trans. Amer. Math. Soc. 367 (2015), 6581-6595
MSC (2010): Primary 35B40, 35Q60; Secondary 78A40, 78M35
Published electronically: November 24, 2014
MathSciNet review: 3356948
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the study of the behavior of the unique solution $ u_\delta \in H^{1}_{0}(\Omega )$, as $ \delta \to 0$, to the equation

$\displaystyle \mathrm {div}(s_\delta A \nabla u_{\delta }) + k^2 s_0 \Sigma u_{\delta } = s_0 f$$\displaystyle \mbox { in } \Omega ,$    

where $ \Omega $ is a smooth connected bounded open subset of $ \mathbb{R}^d$ with $ d=2$ or 3, $ f \in L^2(\Omega )$, $ k$ is a non-negative constant, $ A$ is a uniformly elliptic matrix-valued function, $ \Sigma $ is a real function bounded above and below by positive constants, and $ s_\delta $ is a complex function whose real part takes the values $ 1$ and $ -1$ and whose imaginary part is positive and converges to 0 as $ \delta $ goes to 0. This is motivated from a result of Nicorovici, McPhedran, and Milton; another motivation is the concept of complementary media. After introducing the reflecting complementary media, complementary media generated by reflections, we characterize $ f$ for which $ \Vert u_\delta \Vert _{H^1(\Omega )}$ remains bounded as $ \delta $ goes to 0. For such an $ f$, we also show that $ u_\delta $ converges weakly in $ H^1(\Omega )$ and provide a formula to compute the limit.

References [Enhancements On Off] (What's this?)

  • [1] Giovanni Alessandrini, Strong unique continuation for general elliptic equations in 2D, J. Math. Anal. Appl. 386 (2012), no. 2, 669–676. MR 2834777,
  • [2] Habib Ammari, Giulio Ciraolo, Hyeonbae Kang, Hyundae Lee, and Graeme W. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 667–692. MR 3035988,
  • [3] Guy Bouchitté and Ben Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math. 63 (2010), no. 4, 437–463. MR 2738456,
  • [4] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
  • [5] O. P. Bruno and S. Lintner, Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys. 102 (2007), 12452.
  • [6] R. V. Kohn, J. Lu, B. Schweize, and M. I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, (2013),
  • [7] Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. 102 (2009), 093901.
  • [8] Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett. 102 (2009), 253902.
  • [9] H. M. Nguyen and H. L. Nguyen, Complete resonance and localized resonance in plasmonic structures, (2013),
  • [10] H. M. Nguyen, Cloaking using complementary media in the quasistatic regime, (2013),
  • [11] Graeme W. Milton and Nicolae-Alexandru P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2074, 3027–3059. MR 2263683,
  • [12] G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys. 10 (2008), 115021.
  • [13] Graeme W. Milton, Nicolae-Alexandru P. Nicorovici, Ross C. McPhedran, and Viktor A. Podolskiy, A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2064, 3999–4034. MR 2186014,
  • [14] N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Optical and dielectric properties of partially resonant composites, Phys. Rev. B 49 (1994), 8479-8482.
  • [15] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000), 3966-3969.
  • [16] -, Perfect cylindrical lenses, Optics Express 1 (2003), 755-760.
  • [17] M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc. 95 (1960), 81–91. MR 0113030,
  • [18] S. A. Ramakrishna and J. B. Pendry, Focusing light using negative refraction, J. Phys.: Condens. Matter 15 (2003), 6345.
  • [19] -, Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry, Phys. Rev. B 69 (2004), 115115.
  • [20] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001), 77-79.
  • [21] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000), 4184-4187.
  • [22] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of $ \varepsilon $ and $ \mu $, Usp. Fiz. Nauk 92 (1964), 517-526.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35B40, 35Q60, 78A40, 78M35

Retrieve articles in all journals with MSC (2010): 35B40, 35Q60, 78A40, 78M35

Additional Information

Hoai-Minh Nguyen
Affiliation: Chair of Analysis and Applied Mathematics, École Polytechnique Féderale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland – School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Received by editor(s): September 23, 2013
Published electronically: November 24, 2014
Additional Notes: This research was supported by NSF grant DMS-1201370 and by the Alfred P. Sloan Foundation
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society