Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A sharp Sobolev trace inequality involving the mean curvature on Riemannian manifolds


Authors: Tianling Jin and Jingang Xiong
Journal: Trans. Amer. Math. Soc. 367 (2015), 6751-6770
MSC (2010): Primary 46E35
DOI: https://doi.org/10.1090/S0002-9947-2014-06429-5
Published electronically: November 12, 2014
MathSciNet review: 3356953
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (M,g)$ be a smooth compact $ n$-dimensional Riemannian manifold with smooth boundary $ \partial M$ for $ n\ge 5$. We prove a trace inequality, that is

$\displaystyle \Vert u\Vert^2_{L^q(\partial M)}\leq S\left (\int _{M}\vert\nabla... ...{\partial M}h_g u^2\,\textup {d} s_g\right )+A\Vert u\Vert^2_{L^r(\partial M)} $

for all $ u\in H^1(M)$, where $ S=\frac {2}{n-2}\omega _n^{-1/(n-1)}$ with $ \omega _n$ the volume of the unit sphere in $ \mathbb{R}^n$, $ q=\frac {2(n-1)}{n-2}$, $ r=\frac {2(n-1)}{n}$, $ h_g$ is the mean curvature of $ \partial M$, $ \textup {d} v_g$ is the volume form of $ (M,g)$, $ \textup {d} s_g$ is the induced volume form on $ \partial M$, and $ A$ is a positive constant depending only on $ (M, g)$. This inequality is sharp in the sense that $ S$ cannot be replaced by any smaller constant, $ h$ in general cannot be replaced by any smooth function which is smaller than $ h$ at some point on $ \partial M$, and $ r$ cannot be replaced by any smaller number.

References [Enhancements On Off] (What's this?)

  • [1] Adimurthi and S. L. Yadava, Some remarks on Sobolev type inequalities, Calc. Var. Partial Differential Equations 2 (1994), no. 4, 427-442. MR 1383917 (97e:35033), https://doi.org/10.1007/BF01192092
  • [2] Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573-598 (French). MR 0448404 (56 #6711)
  • [3] Thierry Aubin and Yan Yan Li, On the best Sobolev inequality, J. Math. Pures Appl. (9) 78 (1999), no. 4, 353-387. MR 1696357 (2000e:46041), https://doi.org/10.1016/S0021-7824(99)00012-4
  • [4] A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106-172. MR 1087949 (92k:58055), https://doi.org/10.1016/0022-1236(91)90026-2
  • [5] William Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213-242. MR 1230930 (94m:58232), https://doi.org/10.2307/2946638
  • [6] Haïm Brezis and Elliott H. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), no. 1, 73-86. MR 790771 (86i:46033), https://doi.org/10.1016/0022-1236(85)90020-5
  • [7] Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $ L^{1}$, J. Math. Soc. Japan 25 (1973), 565-590. MR 0336050 (49 #826)
  • [8] Pascal Cherrier, Problèmes de Neumann non linéaires sur les variétés riemanniennes, J. Funct. Anal. 57 (1984), no. 2, 154-206 (French, with English summary). MR 749522 (86c:58154), https://doi.org/10.1016/0022-1236(84)90094-6
  • [9] Sérgio de Moura Almaraz, Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differential Equations 251 (2011), no. 7, 1813-1840. MR 2823676, https://doi.org/10.1016/j.jde.2011.04.013
  • [10] Olivier Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (1999), no. 2, 327-346. MR 1697448 (2000d:58033), https://doi.org/10.1007/s002080050297
  • [11] Olivier Druet, Isoperimetric inequalities on compact manifolds, Geom. Dedicata 90 (2002), 217-236. MR 1898162 (2003a:53045), https://doi.org/10.1023/A:1014977309741
  • [12] Olivier Druet and Emmanuel Hebey, The $ AB$ program in geometric analysis: sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc. 160 (2002), no. 761, viii+98. MR 1938183 (2003m:58028), https://doi.org/10.1090/memo/0761
  • [13] José F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math. (2) 136 (1992), no. 1, 1-50. MR 1173925 (93e:53046), https://doi.org/10.2307/2946545
  • [14] José F. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), no. 3, 687-698. MR 962929 (90a:46071), https://doi.org/10.1512/iumj.1988.37.37033
  • [15] N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), no. 6, 1201-1245. MR 2276538 (2007k:35085), https://doi.org/10.1007/s00039-006-0579-2
  • [16] Fengbo Hang, Xiaodong Wang, and Xiaodong Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 1, 1-21. MR 2483810 (2010a:53050), https://doi.org/10.1016/j.anihpc.2007.03.006
  • [17] Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256 (2000e:58011)
  • [18] Emmanuel Hebey, Sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1193-1213 (electronic). MR 1867378 (2002m:58025), https://doi.org/10.1090/S0002-9947-01-02913-0
  • [19] Emmanuel Hebey and Michel Vaugon, Meilleures constantes dans le théorème d'inclusion de Sobolev, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 1, 57-93 (French, with English and French summaries). MR 1373472 (96m:46054)
  • [20] Tianling Jin and Jingang Xiong, A fractional Yamabe flow and some applications, to appear in J. Reine Angew. Math. DOI: 10.1515/crelle-2012-0110.
  • [21] Tianling Jin and Jingang Xiong, Sharp constants in weighted trace inequalities on Riemannian manifolds, Calc. Var. Partial Differential Equations 48 (2013), no. 3-4, 555-585. MR 3116023, https://doi.org/10.1007/s00526-012-0562-8
  • [22] Carlos E. Kenig and Jill Pipher, The Neumann problem for elliptic equations with nonsmooth coefficients, Invent. Math. 113 (1993), no. 3, 447-509. MR 1231834 (95b:35046), https://doi.org/10.1007/BF01244315
  • [23] Yanyan Li and Tonia Ricciardi, A sharp Sobolev inequality on Riemannian manifolds, Commun. Pure Appl. Anal. 2 (2003), no. 1, 1-31. MR 1961446 (2004a:58039), https://doi.org/10.1016/S1631-073X(02)02529-3
  • [24] Yanyan Li and Meijun Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), no. 2, 383-417. MR 1369398 (96k:35061), https://doi.org/10.1215/S0012-7094-95-08016-8
  • [25] Yanyan Li and Meijun Zhu, Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math. 50 (1997), no. 5, 449-487. MR 1443055 (98c:46065), https://doi.org/10.1002/(SICI)1097-0312(199705)50:5$ \langle $449::AID-CPA2$ \rangle $3.3.CO;2-5
  • [26] Yanyan Li and Meijun Zhu, Sharp Sobolev inequalities involving boundary terms, Geom. Funct. Anal. 8 (1998), no. 1, 59-87. MR 1601846 (98m:58144), https://doi.org/10.1007/s000390050048
  • [27] Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349-374. MR 717827 (86i:42010), https://doi.org/10.2307/2007032

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46E35

Retrieve articles in all journals with MSC (2010): 46E35


Additional Information

Tianling Jin
Affiliation: Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
Email: tj@math.uchicago.edu

Jingang Xiong
Affiliation: Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
Email: jxiong@math.pku.edu.cn

DOI: https://doi.org/10.1090/S0002-9947-2014-06429-5
Received by editor(s): December 30, 2013
Received by editor(s) in revised form: March 3, 2014
Published electronically: November 12, 2014
Additional Notes: The second author was supported in part by the First Class Postdoctoral Science Foundation of China (No. 2012M520002).
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society