Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A $ T(b)$ theorem on product spaces


Author: Yumeng Ou
Journal: Trans. Amer. Math. Soc. 367 (2015), 6159-6197
MSC (2010): Primary 42B20
DOI: https://doi.org/10.1090/S0002-9947-2015-06246-1
Published electronically: January 29, 2015
MathSciNet review: 3356933
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper is a bi-parameter $ T(b)$ theorem for the case that $ b$ is a tensor product of two pseudo-accretive functions. In the proof, we also discuss the $ L^2$ boundedness of different types of the $ b$-adapted bi-parameter paraproducts.


References [Enhancements On Off] (What's this?)

  • [1] Alain Bernard, Espaces $ H^{1}$ de martingales à deux indices. Dualité avec les martingales de type ``BMO'', Bull. Sci. Math. (2) 103 (1979), no. 3, 297-303 (French, with English summary). MR 539351 (82d:60092)
  • [2] Sun-Yung A. Chang and Robert Fefferman, Some recent developments in Fourier analysis and $ H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1-43. MR 766959 (86g:42038), https://doi.org/10.1090/S0273-0979-1985-15291-7
  • [3] R. R. Coifman, Peter W. Jones, and Stephen Semmes, Two elementary proofs of the $ L^2$ boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), no. 3, 553-564. MR 986825 (90k:42017), https://doi.org/10.2307/1990943
  • [4] Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371-397. MR 763911 (85k:42041), https://doi.org/10.2307/2006946
  • [5] G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4, 1-56 (French). MR 850408 (88f:47024), https://doi.org/10.4171/RMI/17
  • [6] C. Fefferman and E. M. Stein, $ H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. MR 0447953 (56 #6263)
  • [7] Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109-130. MR 898053 (90e:42030), https://doi.org/10.2307/1971346
  • [8] Robert Fefferman and Elias M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117-143. MR 664621 (84d:42023), https://doi.org/10.1016/S0001-8708(82)80001-7
  • [9] Tuomas Hytönen, Representation of singular integrals by dyadic operators, and the $ A_2$ theorem, preprint (2011).
  • [10] Tuomas P. Hytönen, Michael T. Lacey, Henri Martikainen, Tuomas Orponen, Maria Carmen Reguera, Eric T. Sawyer, and Ignacio Uriarte-Tuero, Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on $ A_p$ weighted spaces, J. Anal. Math. 118 (2012), no. 1, 177-220. MR 2993026, https://doi.org/10.1007/s11854-012-0033-3
  • [11] Tuomas Hytönen and Henri Martikainen, Non-homogeneous $ Tb$ theorem and random dyadic cubes on metric measure spaces, J. Geom. Anal. 22 (2012), no. 4, 1071-1107. MR 2965363, https://doi.org/10.1007/s12220-011-9230-z
  • [12] Tuomas Hytönen and Henri Martikainen, Non-homogeneous $ T1$ theorem for bi-parameter singular integrals, Adv. Math. 261 (2014), 220-273. MR 3213300, https://doi.org/10.1016/j.aim.2014.02.011
  • [13] Tuomas Hytönen, Carlos Pérez, Sergei Treil, and Alexander Volberg, Sharp weighted estimates for dyadic shifts and the $ A_2$ conjecture, J. Reine Angew. Math. 687 (2014), 43-86. MR 3176607, https://doi.org/10.1515/crelle-2012-0047
  • [14] Jean-Lin Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), no. 3, 55-91. MR 836284 (88d:42028), https://doi.org/10.4171/RMI/15
  • [15] Michael Lacey and Jason Metcalfe, Paraproducts in one and several parameters, Forum Math. 19 (2007), no. 2, 325-351. MR 2313844 (2008b:42026), https://doi.org/10.1515/FORUM.2007.013
  • [16] Henri Martikainen, Representation of bi-parameter singular integrals by dyadic operators, Adv. Math. 229 (2012), no. 3, 1734-1761. MR 2871155, https://doi.org/10.1016/j.aim.2011.12.019
  • [17] Camil Muscalu, Jill Pipher, Terence Tao, and Christoph Thiele, Bi-parameter paraproducts, Acta Math. 193 (2004), no. 2, 269-296. MR 2134868 (2005m:42028), https://doi.org/10.1007/BF02392566
  • [18] F. Nazarov, S. Treil, and A. Volberg, The $ Tb$-theorem on non-homogeneous spaces, Acta Math. 190 (2003), no. 2, 151-239. MR 1998349 (2005d:30053), https://doi.org/10.1007/BF02392690
  • [19] Jill Pipher and Lesley A. Ward, BMO from dyadic BMO on the bidisc, J. Lond. Math. Soc. (2) 77 (2008), no. 2, 524-544. MR 2400405 (2009f:42024), https://doi.org/10.1112/jlms/jdm114
  • [20] S. Pott and P. Villarroya, A $ T(1)$ theorem on product spaces, preprint (2013).
  • [21] Sergei Treil, $ H^1$ and dyadic $ H^1$, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, vol. 226, Amer. Math. Soc., Providence, RI, 2009, pp. 179-193. MR 2500519 (2010g:42050)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B20

Retrieve articles in all journals with MSC (2010): 42B20


Additional Information

Yumeng Ou
Affiliation: Department of Mathematics, Brown University, 151 Thayer Street, Providence, Rhode Island 02912
Email: yumeng_ou@brown.edu

DOI: https://doi.org/10.1090/S0002-9947-2015-06246-1
Received by editor(s): June 4, 2013
Published electronically: January 29, 2015
Additional Notes: The author was partially supported by NSF-DMS 0901139 and ARC DP 120100399.
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society