Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Freely independent random variables with non-atomic distributions


Authors: Dimitri Shlyakhtenko and Paul Skoufranis
Journal: Trans. Amer. Math. Soc. 367 (2015), 6267-6291
MSC (2010): Primary 46L54; Secondary 15B52
DOI: https://doi.org/10.1090/S0002-9947-2015-06434-4
Published electronically: February 26, 2015
MathSciNet review: 3356937
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the distributions of non-commutative polynomials of non-atomic, freely independent random variables. In particular, we obtain an analogue of the Strong Atiyah Conjecture for free groups, thus proving that the measure of each atom of any $ n \times n$ matricial polynomial of non-atomic, freely independent random variables is an integer multiple of $ n^{-1}$. In addition, we show that the Cauchy transform of the distribution of any matricial polynomial of freely independent semicircular variables is algebraic, and thus the polynomial has a distribution that is real-analytic except at a finite number of points.


References [Enhancements On Off] (What's this?)

  • [1] Greg W. Anderson and Ofer Zeitouni, A law of large numbers for finite-range dependent random matrices, Comm. Pure Appl. Math. 61 (2008), no. 8, 1118-1154. MR 2417889 (2010a:60091), https://doi.org/10.1002/cpa.20235
  • [2] Michael Francis Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics, Vol. 401, Springer-Verlag, Berlin-New York, 1974. MR 0482866 (58 #2910)
  • [3] S. T. Belinschi, T. Mai, and R. Speicher, Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem, 24, available at arXiv:1303.3196.
  • [4] Hari Bercovici and Dan Voiculescu, Regularity questions for free convolution, Nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 37-47. MR 1639647 (99j:46074)
  • [5] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779 (95j:46063)
  • [6] Rostislav I. Grigorchuk and Andrzej Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), no. 1-3, 209-244. MR 1866850 (2002j:60009), https://doi.org/10.1023/A:1012061801279
  • [7] Uffe Haagerup, Hanne Schultz, and Steen Thorbjørnsen, A random matrix approach to the lack of projections in $ C^*_{\rm red}(\mathbb{F}_2)$, Adv. Math. 204 (2006), no. 1, 1-83. MR 2233126 (2007j:46088), https://doi.org/10.1016/j.aim.2005.05.008
  • [8] Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, Mathematical Surveys and Monographs, vol. 77, American Mathematical Society, Providence, RI, 2000. MR 1746976 (2001j:46099)
  • [9] Peter A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5 (1993), no. 6, 561-576. MR 1242889 (94h:20009), https://doi.org/10.1515/form.1993.5.561
  • [10] Wolfgang Lück, $ L^2$-invariants: theory and applications to geometry and $ K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649 (2003m:58033)
  • [11] M. Pimsner and D. Voiculescu, Exact sequences for $ K$-groups and Ext-groups of certain cross-product $ C^{\ast } $-algebras, J. Operator Theory 4 (1980), no. 1, 93-118. MR 587369 (82c:46074)
  • [12] M. Pimsner and D. Voiculescu, $ K$-groups of reduced crossed products by free groups, J. Operator Theory 8 (1982), no. 1, 131-156. MR 670181 (84d:46092)
  • [13] N. Raj Rao and Alan Edelman, The polynomial method for random matrices, Found. Comput. Math. 8 (2008), no. 6, 649-702. MR 2461243 (2010b:15046), https://doi.org/10.1007/s10208-007-9013-x
  • [14] H. Reich, Group von Neumann algebras and related algebras, Ph.D. Thesis, Universität Göttingen, http://www.mi.fu-berlin.de/math/groups/top/members/publ/diss.pdf.
  • [15] Roman Sauer, Power series over the group ring of a free group and applications to Novikov-Shubin invariants, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 449-468. MR 2048733 (2005b:16078), https://doi.org/10.1142/9789812704443_0020
  • [16] Thomas Schick, Integrality of $ L^2$-Betti numbers, Math. Ann. 317 (2000), no. 4, 727-750. MR 1777117 (2002k:55009a), https://doi.org/10.1007/PL00004421
  • [17] T. Schick, Integrality of L$ ^2$-Betti numbers, 24, available at arXiv:math/0001101v4.
  • [18] M. P. Schützenberger, On a theorem of R. Jungen, Proc. Amer. Math. Soc. 13 (1962), 885-890. MR 0142781 (26 #350)
  • [19] Dan Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 66 (1986), no. 3, 323-346. MR 839105 (87j:46122), https://doi.org/10.1016/0022-1236(86)90062-5
  • [20] Dan Voiculescu, Multiplication of certain noncommuting random variables, J. Operator Theory 18 (1987), no. 2, 223-235. MR 915507 (89b:46076)
  • [21] Dan Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. I, Comm. Math. Phys. 155 (1993), no. 1, 71-92. MR 1228526 (94k:46137)
  • [22] Dan Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), no. 1, 189-227. MR 1618636 (99d:46087), https://doi.org/10.1007/s002220050222
  • [23] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253 (94c:46133)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L54, 15B52

Retrieve articles in all journals with MSC (2010): 46L54, 15B52


Additional Information

Dimitri Shlyakhtenko
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095
Email: shlyakht@math.ucla.edu

Paul Skoufranis
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095
Email: pskoufra@math.ucla.edu

DOI: https://doi.org/10.1090/S0002-9947-2015-06434-4
Keywords: Freely independent random variables, non-atomic distributions, Atiyah Property for tracial $*$-algebras, free entropy, semicircular variables.
Received by editor(s): June 12, 2013
Published electronically: February 26, 2015
Additional Notes: This research was supported in part by NSF grants DMS-090076, DMS-1161411, DARPA HR0011-12-1-0009, and by NSERC PGS
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society