Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Rank inequalities for the Heegaard Floer homology of Seifert homology spheres


Authors: Çağrı Karakurt and Tye Lidman
Journal: Trans. Amer. Math. Soc. 367 (2015), 7291-7322
MSC (2010): Primary 57R58, 57M27
DOI: https://doi.org/10.1090/S0002-9947-2014-06451-9
Published electronically: December 23, 2014
MathSciNet review: 3378830
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish three rank inequalities for the reduced flavor of Heegaard Floer homology of Seifert fibered integer homology spheres. Combining these inequalities with the known classifications of non-zero degree maps between Seifert fibered spaces, we prove that a map $ f:Y' \to Y$ between Seifert homology spheres yields the inequality $ \vert\deg f\vert\mathrm {rank} HF_{\mathrm {red}}(Y) \leq \mathrm {rank} HF_{\mathrm {red}}(Y')$. These inequalities are also applied in conjunction with an algorithm of Némethi to give a method to solve the botany problem for the Heegaard Floer homology of these manifolds.


References [Enhancements On Off] (What's this?)

  • [1] Matthias Beck and Sinai Robins, Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, 2007. Integer-point enumeration in polyhedra. MR 2271992 (2007h:11119)
  • [2] M. B. Can and Ç. Karakurt, Calculating Heegaard-Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014), no. 1, 43-75. MR 3267169, https://doi.org/10.1007/s10474-014-0432-2
  • [3] Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109-137. MR 1051101 (91k:57029), https://doi.org/10.1112/plms/s3-61.1.109
  • [4] Shinji Fukuhara, Yukio Matsumoto, and Koichi Sakamoto, Casson's invariant of Seifert homology $ 3$-spheres, Math. Ann. 287 (1990), no. 2, 275-285. MR 1054569 (91e:57027), https://doi.org/10.1007/BF01446893
  • [5] Hong Huang, Branched coverings and nonzero degree maps between Seifert manifolds, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2443-2449 (electronic). MR 1897471 (2003d:57004), https://doi.org/10.1090/S0002-9939-02-06306-2
  • [6] Stanislav Jabuka and Thomas E. Mark, On the Heegaard Floer homology of a surface times a circle, Adv. Math. 218 (2008), no. 3, 728-761. MR 2414320 (2010j:57044), https://doi.org/10.1016/j.aim.2008.01.009
  • [7] Tye Lidman and Ciprian Manolescu, Monopole Floer homology and covering spaces. In preparation.
  • [8] Robert Lipshitz and David Treumann, Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers. Preprint, arXiv:1203.2963, 2012.
  • [9] Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. (2) 169 (2009), no. 2, 633-660. MR 2480614 (2009k:57047), https://doi.org/10.4007/annals.2009.169.633
  • [10] Ciprian Manolescu, Peter Ozsváth, Zoltán Szabó, and Dylan Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007), 2339-2412. MR 2372850 (2009c:57053), https://doi.org/10.2140/gt.2007.11.2339
  • [11] Ciprian Manolescu, Peter Ozsváth, and Dylan Thurston, Grid diagrams and Heegaard Floer invariants. arXiv:0910.0078.
  • [12] András Némethi, On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 991-1042. MR 2140997 (2006c:57011), https://doi.org/10.2140/gt.2005.9.991
  • [13] András Némethi and Liviu I. Nicolaescu, Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269-328 (electronic). MR 1914570 (2003i:14048), https://doi.org/10.2140/gt.2002.6.269
  • [14] Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $ \mu $-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163-196. MR 518415 (80e:57008)
  • [15] Walter Neumann and Jonathan Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), no. 1, 58-78. MR 1036128 (91c:57022), https://doi.org/10.1007/BF02566593
  • [16] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179-261. MR 1957829 (2003m:57066), https://doi.org/10.1016/S0001-8708(02)00030-0
  • [17] Peter Ozsváth and Zoltán Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185-224 (electronic). MR 1988284 (2004h:57039), https://doi.org/10.2140/gt.2003.7.185
  • [18] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58-116. MR 2065507 (2005e:57044), https://doi.org/10.1016/j.aim.2003.05.001
  • [19] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159-1245. MR 2113020 (2006b:57017), https://doi.org/10.4007/annals.2004.159.1159
  • [20] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027-1158. MR 2113019 (2006b:57016), https://doi.org/10.4007/annals.2004.159.1027
  • [21] Peter Ozsváth and Zoltán Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004), no. 1, 1-34. MR 2031164 (2004m:57059), https://doi.org/10.1215/S0012-7094-04-12111-6
  • [22] Yong Wu Rong, Maps between Seifert fibered spaces of infinite $ \pi _1$, Pacific J. Math. 160 (1993), no. 1, 143-154. MR 1227509 (94e:55026)
  • [23] Yong Wu Rong, Degree one maps of Seifert manifolds and a note on Seifert volume, Topology Appl. 64 (1995), no. 2, 191-200. MR 1340870 (96c:57034), https://doi.org/10.1016/0166-8641(94)00108-F
  • [24] Sucharit Sarkar and Jiajun Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. (2) 171 (2010), no. 2, 1213-1236. MR 2630063 (2012f:57032), https://doi.org/10.4007/annals.2010.171.1213
  • [25] Nikolai Saveliev, Invariants for homology $ 3$-spheres, Encyclopaedia of Mathematical Sciences, vol. 140, Springer-Verlag, Berlin, 2002. Low-Dimensional Topology, I. MR 1941324 (2004c:57026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57R58, 57M27

Retrieve articles in all journals with MSC (2010): 57R58, 57M27


Additional Information

Çağrı Karakurt
Affiliation: Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712
Address at time of publication: Department of Mathematics, Bogazici University, Bebek-Istanbul, Turkey 34342
Email: cagri.karakurt@boun.edu.tr

Tye Lidman
Affiliation: Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712

DOI: https://doi.org/10.1090/S0002-9947-2014-06451-9
Keywords: Heegard Floer homology, Seifert homology sphere, graded root, numerical semigroup, degree, botany
Received by editor(s): October 9, 2013
Published electronically: December 23, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society