Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Laws of rare events for deterministic and random dynamical systems


Authors: Hale Aytaç, Jorge Milhazes Freitas and Sandro Vaienti
Journal: Trans. Amer. Math. Soc. 367 (2015), 8229-8278
MSC (2010): Primary 37A50, 60G70, 37B20, 60G10, 37A25, 37H99
DOI: https://doi.org/10.1090/S0002-9947-2014-06300-9
Published electronically: November 10, 2014
MathSciNet review: 3391915
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The object of this paper is twofold. From one side we study the dichotomy, in terms of the Extremal Index of the possible Extreme Value Laws, when the rare events are centred around periodic or non-periodic points. Then we build a general theory of Extreme Value Laws for randomly perturbed dynamical systems. We also address, in both situations, the convergence of Rare Events Point Processes. Decay of correlations against $ L^1$ observables will play a central role in our investigations.


References [Enhancements On Off] (What's this?)

  • [1] José F. Alves, Jorge M. Freitas, Stefano Luzzatto, and Sandro Vaienti, From rates of mixing to recurrence times via large deviations, Adv. Math. 228 (2011), no. 2, 1203-1236. MR 2822221 (2012g:37049), https://doi.org/10.1016/j.aim.2011.06.014
  • [2] José Ferreira Alves and Vítor Araújo, Random perturbations of nonuniformly expanding maps, Astérisque 286 (2003), xvii, 25-62 (English, with English and French summaries). Geometric methods in dynamics. I. MR 2052296 (2005e:37058)
  • [3] Viviane Baladi, Michael Benedicks, and Véronique Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 1, 77-126 (English, with English and French summaries). MR 1886006 (2003d:37027), https://doi.org/10.1016/S0012-9593(01)01083-7
  • [4] Viviane Baladi, Michael Benedicks, and Véronique Maume-Deschamps, Corrigendum: ``Almost sure rates of mixing for i.i.d. unimodal maps'' [Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 1, 77-126; MR1886006 (2003d:37027)], Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 2, 319-322. MR 1980314 (2004e:37050)
  • [5] Abraham Boyarsky and Paweł Góra, Laws of chaos, Probability and its Applications, Birkhäuser Boston Inc., Boston, MA, 1997. Invariant measures and dynamical systems in one dimension. MR 1461536 (99a:58102)
  • [6] Jean-René Chazottes, Zaqueu Coelho, and Pierre Collet, Poisson processes for subsystems of finite type in symbolic dynamics, Stoch. Dyn. 9 (2009), no. 3, 393-422. MR 2566908 (2011g:37014), https://doi.org/10.1142/S0219493709002713
  • [7] Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357-390. MR 1626749 (99g:58073), https://doi.org/10.2307/121012
  • [8] Andrew Ferguson and Mark Pollicott, Escape rates for Gibbs measures, Ergodic Theory Dynam. Systems 32 (2012), no. 3, 961-988. MR 2995652, https://doi.org/10.1017/S0143385711000058
  • [9] Ana Cristina Moreira Freitas and Jorge Milhazes Freitas, On the link between dependence and independence in extreme value theory for dynamical systems, Statist. Probab. Lett. 78 (2008), no. 9, 1088-1093. MR 2422964 (2009e:37006), https://doi.org/10.1016/j.spl.2007.11.002
  • [10] Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd, Hitting time statistics and extreme value theory, Probab. Theory Related Fields 147 (2010), no. 3-4, 675-710. MR 2639719 (2011g:37015), https://doi.org/10.1007/s00440-009-0221-y
  • [11] Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd, Extreme value laws in dynamical systems for non-smooth observations, J. Stat. Phys. 142 (2011), no. 1, 108-126. MR 2749711 (2012a:60149), https://doi.org/10.1007/s10955-010-0096-4
  • [12] Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd, The extremal index, hitting time statistics and periodicity, Adv. Math. 231 (2012), no. 5, 2626-2665. MR 2970462, https://doi.org/10.1016/j.aim.2012.07.029
  • [13] Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd, The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics, Comm. Math. Phys. 321 (2013), no. 2, 483-527. MR 3063917, https://doi.org/10.1007/s00220-013-1695-0
  • [14] Jorge Milhazes Freitas, Extremal behaviour of chaotic dynamics, Dyn. Syst. 28 (2013), no. 3, 302-332. MR 3170619, https://doi.org/10.1080/14689367.2013.806731
  • [15] N. Haydn, Y. Lacroix, and S. Vaienti, Hitting and return times in ergodic dynamical systems, Ann. Probab. 33 (2005), no. 5, 2043-2050. MR 2165587 (2006i:37006), https://doi.org/10.1214/009117905000000242
  • [16] Nicolai Haydn and Sandro Vaienti, The compound Poisson distribution and return times in dynamical systems, Probab. Theory Related Fields 144 (2009), no. 3-4, 517-542. MR 2496441 (2010i:37015), https://doi.org/10.1007/s00440-008-0153-y
  • [17] Masaki Hirata, Poisson law for Axiom A diffeomorphisms, Ergodic Theory Dynam. Systems 13 (1993), no. 3, 533-556. MR 1245828 (94m:58137), https://doi.org/10.1017/S0143385700007513
  • [18] Olav Kallenberg, Random measures, 4th ed., Akademie-Verlag, Berlin, 1986. MR 854102 (87k:60137)
  • [19] Gerhard Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), no. 4, 313-333. MR 685377 (84k:58130), https://doi.org/10.1007/BF01667385
  • [20] Gerhard Keller, Rare events, exponential hitting times and extremal indices via spectral perturbation, Dyn. Syst. 27 (2012), no. 1, 11-27. MR 2903242, https://doi.org/10.1080/14689367.2011.653329
  • [21] Gerhard Keller and Carlangelo Liverani, Rare events, escape rates and quasistationarity: some exact formulae, J. Stat. Phys. 135 (2009), no. 3, 519-534. MR 2535206 (2011a:37012), https://doi.org/10.1007/s10955-009-9747-8
  • [22] Yuri Kifer, Ergodic theory of random transformations, Progress in Probability and Statistics, vol. 10, Birkhäuser Boston Inc., Boston, MA, 1986. MR 884892 (89c:58069)
  • [23] Yuri Kifer and Pei-Dong Liu, Random dynamics, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 379-499. MR 2186245 (2008a:37002), https://doi.org/10.1016/S1874-575X(06)80030-5
  • [24] Yuri Kifer and Ariel Rapaport, Poisson and compound Poisson approximations in a nonconventional setup, Probability and Related Fields, DOI 10.1007/s00440-013-0541-9.
  • [25] M. R. Leadbetter, On extreme values in stationary sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 289-303. MR 0362465 (50 #14906)
  • [26] Philippe Marie and Jérôme Rousseau, Recurrence for random dynamical systems, Discrete Contin. Dyn. Syst. 30 (2011), no. 1, 1-16. MR 2773129 (2012c:37108), https://doi.org/10.3934/dcds.2011.30.1
  • [27] Marek Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), no. 1, 69-80. MR 728198 (85h:28019)
  • [28] Benoît Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math. 116 (2000), 223-248. MR 1759406 (2001e:37037), https://doi.org/10.1007/BF02773219
  • [29] Benoit Saussol, An introduction to quantitative Poincaré recurrence in dynamical systems, Rev. Math. Phys. 21 (2009), no. 8, 949-979. MR 2568049 (2011c:37031), https://doi.org/10.1142/S0129055X09003785
  • [30] Marcelo Viana, Stochastic dynamics of deterministic systems, Brazillian Math. Colloquium 1997, IMPA, 1997.
  • [31] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A50, 60G70, 37B20, 60G10, 37A25, 37H99

Retrieve articles in all journals with MSC (2010): 37A50, 60G70, 37B20, 60G10, 37A25, 37H99


Additional Information

Hale Aytaç
Affiliation: Centro de Matemática, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
Address at time of publication: Universidade Federal da Bahia, Instituto de Matemática, Av. Adhemar de Barros, S/N, Ondina, 40170-110 Salvador-BA, Brazil
Email: aytach@fc.up.pt

Jorge Milhazes Freitas
Affiliation: Centro de Matemática & Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
Email: jmfreita@fc.up.pt

Sandro Vaienti
Affiliation: Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France – and – Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France
Email: vaienti@cpt.univ-mrs.fr

DOI: https://doi.org/10.1090/S0002-9947-2014-06300-9
Keywords: Random dynamical systems, extreme values, hitting times statistics, extremal index
Received by editor(s): January 31, 2013
Received by editor(s) in revised form: September 13, 2013
Published electronically: November 10, 2014
Additional Notes: The first author was partially supported by FCT (Portugal) grant SFRH/BD/33371/2008
The first and second authors were supported by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT and CMUP under the project PEst-C/MAT/UI0144/2011.
The second author was partially supported by FCT grant SFRH/BPD/66040/2009 and by FCT project PTDC/MAT/099493/2008
The third author was supported by the CNRS-PEPS Mathematical Methods of Climate Theory and by the ANR-Project Perturbations; part of this work was done while he was visiting the Centro de Modelamiento Matemático, UMI2807, in Santiago de Chile with a CNRS support (délégation).
All three authors were supported by FCT project PTDC/MAT/120346/2010, which is financed by national and European Community structural funds through the programs FEDER and COMPETE
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society