Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cellular automorphisms and self-duality


Authors: Lowell Abrams and Daniel Slilaty
Journal: Trans. Amer. Math. Soc. 367 (2015), 7695-7773
MSC (2010): Primary 05-xx; Secondary 57-xx
DOI: https://doi.org/10.1090/tran/6258
Published electronically: May 20, 2015
MathSciNet review: 3391898
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We catalog up to a type of reducibility all cellular automorphisms of the sphere, projective plane, torus, Klein bottle, and three-crosscaps (Dyck's) surface. We also show how one can obtain all self-dual embeddings in a surface $ S$ given a catalog of all irreducible cellular automorphisms in $ S$.


References [Enhancements On Off] (What's this?)

  • [1] Amos Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217. MR 0321797 (48 #164)
  • [2] Mark S. Anderson and R. Bruce Richter, Self-dual Cayley maps, European J. Combin. 21 (2000), no. 4, 419-430. MR 1756148 (2001i:05083), https://doi.org/10.1006/eujc.1999.0357
  • [3] Dan Archdeacon, A survey of self-dual polyhedra, Complexity (Prachatice, 1990) Ann. Discrete Math., vol. 51, North-Holland, Amsterdam, 1992, pp. 5-12. MR 1206236 (93j:05043), https://doi.org/10.1016/S0167-5060(08)70598-3
  • [4] Dan Archdeacon, Self-dual embeddings of complete multipartite graphs, J. Graph Theory 18 (1994), no. 7, 735-749. MR 1297194 (95g:05036), https://doi.org/10.1002/jgt.3190180709
  • [5] Dan Archdeacon, Pavol Gvozdjak, and Jozef Širáň, Constructing and forbidding automorphisms in lifted maps, Math. Slovaca 47 (1997), no. 2, 113-129. MR 1476862 (98k:05050)
  • [6] Dan Archdeacon and Nora Hartsfield, Self-dual embeddings of complete bipartite graphs, J. Combin. Theory Ser. B 54 (1992), no. 2, 249-256. MR 1152452 (93b:05046), https://doi.org/10.1016/0095-8956(92)90056-4
  • [7] Dan Archdeacon and Seiya Negami, The construction of self-dual projective polyhedra, J. Combin. Theory Ser. B 59 (1993), no. 1, 122-131. MR 1234388 (94f:52012), https://doi.org/10.1006/jctb.1993.1059
  • [8] Dan Archdeacon and R. Bruce Richter, The construction and classification of self-dual spherical polyhedra, J. Combin. Theory Ser. B 54 (1992), no. 1, 37-63. MR 1142263 (92j:05058), https://doi.org/10.1016/0095-8956(92)90065-6
  • [9] Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J., 1974. MR 0375281 (51 #11477)
  • [10] Béla Bollobás and Oliver Riordan, Percolation, Cambridge University Press, New York, 2006. MR 2283880 (2008c:82037)
  • [11] Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, London Mathematical Society Lecture Note Series, vol. 280, Cambridge University Press, Cambridge, 2000. MR 1796706 (2002i:14034)
  • [12] S. Allen Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1991), no. 3, 233-270. MR 1090743 (92b:57021), https://doi.org/10.1016/0022-4049(91)90021-S
  • [13] John H. Conway, Heidi Burgiel, and Chaim Goodman-Strauss, The symmetries of things, A K Peters Ltd., Wellesley, MA, 2008. MR 2410150 (2009c:00002)
  • [14] J. H. Conway and D. H. Huson, The orbifold notation for two-dimensional groups, Structural Chemistry 13 (2002), no. 3/4, 247-257.
  • [15] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin, 1980. MR 562913 (81a:20001)
  • [16] M. Dehn, Die Gruppe der Abbildungsklassen, Das arithmetische Feld auf Flächen, Acta Math. 69 (1938), no. 1, 135-206 (German). MR 1555438, https://doi.org/10.1007/BF02547712
  • [17] Peter Giblin, Graphs, surfaces and homology, 3rd ed., Cambridge University Press, Cambridge, 2010. MR 2722281 (2011f:55001)
  • [18] Jonathan L. Gross and Thomas W. Tucker, Topological graph theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1987. A Wiley-Interscience Publication. MR 898434 (88h:05034)
  • [19] Akikazu Kuribayashi and Hideyuki Kimura, Automorphism groups of compact Riemann surfaces of genus five, J. Algebra 134 (1990), no. 1, 80-103. MR 1068416 (91j:30033), https://doi.org/10.1016/0021-8693(90)90212-7
  • [20] Izumi Kuribayashi and Akikazu Kuribayashi, Automorphism groups of compact Riemann surfaces of genera three and four, J. Pure Appl. Algebra 65 (1990), no. 3, 277-292. MR 1072285 (92a:30041), https://doi.org/10.1016/0022-4049(90)90107-S
  • [21] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a $ 2$-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778. MR 0171269 (30 #1500)
  • [22] Aleksander Malnič, Roman Nedela, and Martin Škoviera, Lifting graph automorphisms by voltage assignments, European J. Combin. 21 (2000), no. 7, 927-947. MR 1787907 (2001i:05086), https://doi.org/10.1006/eujc.2000.0390
  • [23] William S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer-Verlag, New York, 1991. MR 1095046 (92c:55001)
  • [24] Atsuhiro Nakamoto, Irreducible quadrangulations of the Klein bottle, Yokohama Math. J. 43 (1995), no. 2, 125-139. MR 1414189 (97h:05052)
  • [25] Atsuhiro Nakamoto, Diagonal transformations in quadrangulations of surfaces, J. Graph Theory 21 (1996), no. 3, 289-299. MR 1374901 (97a:05074), https://doi.org/10.1002/(SICI)1097-0118(199603)21:3$ \langle $289::AID-JGT3$ \rangle $3.3.CO;2-2
  • [26] Atsuhiro Nakamoto, Irreducible quadrangulations of the torus, J. Combin. Theory Ser. B 67 (1996), no. 2, 183-201. MR 1399674 (97d:05084), https://doi.org/10.1006/jctb.1996.0040
  • [27] Atsuhiro Nakamoto, Generating quadrangulations of surfaces with minimum degree at least $ 3$, J. Graph Theory 30 (1999), no. 3, 223-234. MR 1671172 (2000b:05046), https://doi.org/10.1002/(SICI)1097-0118(199903)30:3$ \langle $223::AID-JGT7$ \rangle $3.3.CO;2-D
  • [28] D. Pellicer and A. I. Weiss, Uniform maps on surfaces of non-negative Euler characteristic, Symmetry Culture Science 22 (2011), no. 1-2, 159-196.
  • [29] Brigitte Servatius and Peter R. Christopher, Construction of self-dual graphs, Amer. Math. Monthly 99 (1992), no. 2, 153-158. MR 1144356 (92k:05047), https://doi.org/10.2307/2324184
  • [30] Brigitte Servatius and Herman Servatius, Self-dual maps on the sphere, Discrete Math. 134 (1994), no. 1-3, 139-150. Algebraic and topological methods in graph theory (Lake Bled, 1991). MR 1303403 (96d:05044), https://doi.org/10.1016/0012-365X(93)E0069-G
  • [31] Brigitte Servatius and Herman Servatius, The $ 24$ symmetry pairings of self-dual maps on the sphere, Discrete Math. 140 (1995), no. 1-3, 167-183. MR 1333718 (96e:52028), https://doi.org/10.1016/0012-365X(94)00293-R
  • [32] Brigitte Servatius and Herman Servatius, Self-dual graphs, Discrete Math. 149 (1996), no. 1-3, 223-232. MR 1375109 (96m:05176), https://doi.org/10.1016/0012-365X(94)00351-I
  • [33] Brigitte Servatius and Herman Servatius, Symmetry, automorphisms, and self-duality of infinite planar graphs and tilings, International Scientific Conference on Mathematics. Proceedings (Žilina, 1998), Univ. Žilina, Žilina, 1998, pp. 83-116. MR 1739919
  • [34] Jozef Širáň, Coverings of graphs and maps, orthogonality, and eigenvectors, J. Algebraic Combin. 14 (2001), no. 1, 57-72. MR 1856229 (2002h:05055), https://doi.org/10.1023/A:1011218020755
  • [35] Jozef Širáň and Thomas W. Tucker, Symmetric maps, Topics in topological graph theory, Encyclopedia Math. Appl., vol. 128, Cambridge Univ. Press, Cambridge, 2009, pp. 199-224. MR 2581547
  • [36] Saul Stahl, Self-dual embeddings of Cayley graphs, J. Combin. Theory Ser. B 27 (1979), no. 1, 92-107. MR 539080 (81f:05072), https://doi.org/10.1016/0095-8956(79)90072-8
  • [37] John Stillwell, Classical topology and combinatorial group theory, 2nd ed., Graduate Texts in Mathematics, vol. 72, Springer-Verlag, New York, 1993. MR 1211642 (94a:57001)
  • [38] David B. Surowski, Lifting map automorphisms and Macbeath's theorem, J. Combin. Theory Ser. B 50 (1990), no. 2, 135-149. MR 1081218 (91j:05040), https://doi.org/10.1016/0095-8956(90)90069-C
  • [39] Carsten Thomassen, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991), no. 2, 605-635. MR 1040045 (91d:57015), https://doi.org/10.2307/2001547
  • [40] W. Thurston, The geometry and topology of 3-manifolds, Tech. report, Princeton University, 1980, Chapter 13; electronic version available at http://library.msri.org/books/gt3m.
  • [41] Thomas W. Tucker, Finite groups acting on surfaces and the genus of a group, J. Combin. Theory Ser. B 34 (1983), no. 1, 82-98. MR 701174 (85b:20055), https://doi.org/10.1016/0095-8956(83)90009-6
  • [42] Arthur T. White, Orientable imbeddings of Cayley graphs, Duke Math. J. 41 (1974), 353-371. MR 0363975 (51 #230)
  • [43] Hassler Whitney, 2-Isomorphic Graphs, Amer. J. Math. 55 (1933), no. 1-4, 245-254. MR 1506961, https://doi.org/10.2307/2371127
  • [44] J. C. Wierman, Construction of infinite self-dual graphs, Proceedings of the 5th Hawaii International Conference on Statistics, Mathematics and Related Fields, 2006.
  • [45] Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B 47 (1989), no. 1, 32-52. MR 1007712 (90k:05138), https://doi.org/10.1016/0095-8956(89)90063-4
  • [46] Robert M. Ziff and Christian R. Scullard, Exact bond percolation thresholds in two dimensions, J. Phys. A 39 (2006), no. 49, 15083-15090. MR 2277091 (2007k:82055), https://doi.org/10.1088/0305-4470/39/49/003

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05-xx, 57-xx

Retrieve articles in all journals with MSC (2010): 05-xx, 57-xx


Additional Information

Lowell Abrams
Affiliation: Department of Mathematics, The George Washington University, Washington, DC 20052
Email: labrams@gwu.edu

Daniel Slilaty
Affiliation: Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435
Email: daniel.slilaty@wright.edu

DOI: https://doi.org/10.1090/tran/6258
Received by editor(s): August 31, 2012
Received by editor(s) in revised form: August 5, 2013
Published electronically: May 20, 2015
Additional Notes: Much of the work in this paper was completed during several visits between the two authors which were funded by the Department of Mathematics of The George Washington University and the Department of Mathematics and Statistics of Wright State University
Dedicated: Dedicated to John B. Conway on the occasion of his retirement
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society